EXERCISE 10.1

Choose the correct answer from the given four options:

Q1. To divide a line segment $A B$ in the ratio $5: 7$, first a ray $A X$ is drawn so that $\angle \mathrm{BAX}$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is
(a) 8
(b) 10
(c) 11
(d) 12

Sol. (d): Minimum number of the points marked $=5+7=12$ verifies option (d).
Q2. To divide a line segment AB in ratio 4:7, a ray AX is drawn first such that $\angle \mathrm{BAX}$ is an acute angle and then points $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ are located at equal distances on the ray $A X$ and the point B is joined to
(a) A_{12}
(b) A_{11}
(c) A_{10}
(d) A_{9}

Sol. (b): We have to divide the constructed line into $7+4=11$ equal parts and 11th part will be joined to B. Verifies the option (b).
Q3. To divide a line segment $A B$ in the ratio $5: 6$, draw a ray $A X$ such that $\angle \mathrm{BAX}$ is an acute angle, then draw a ray BY parallel to AX , and the points, $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ and $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \ldots$ are located at. Equal distances on ray $A X$ and $B Y$, respectively. Then the points joined are
(a) A_{5} and B_{6}
(b) A_{6} and B_{5}
(c) A_{4} and B_{5}
(d) A_{5} and B_{4}

Sol. (a): In the figure, segment AB of given length is divided into 2 parts of ratio 5:6 in following steps:
(i) Draw a line-segment AB of given length.
(ii) Draw an acute angle BAX as shown in figure either up side or down side.
(iii) Draw angle $\angle \mathrm{ABY}=\angle \mathrm{BAX}$ on other side of $A X$, i.e., down side.
(iv) Divide AX into 5 equal parts by using compass.

(v) Divide BX into same distance in 6 equal parts as AX was divided.
(vi) Now, join A_{5} and B_{6} which meet AB at P . P divides AB in ratio $\mathrm{AP}: \mathrm{PB}=5: 6$.

Q4. To construct a triangle similar to a given $\triangle \mathrm{ABC}$ with its sides $\frac{3}{7}$ of the corresponding sides of $\triangle \mathrm{ABC}$, first draw a ray $B X$ such that $\angle C B X$ is an acute angle and X lies on the opposite side of A with respect to $B C$. Then locate points $B_{1}, B_{2}, B_{3}, \ldots$ on $B X$ at equal distances and next step is to join
(a) B_{10} to C
(b) B_{3} to C
(c) B_{7} to C
(d) B_{4} to C

Sol. (c): Here, ratio is $\frac{3}{7}<1$ so resultant figure will be smaller than original so, last 7th part is to be joined to C, so that parallel line from third part of $B X$ meet on $B C$ without producing. So, verifies the option (c).
Q5. To construct a triangle similar to a given $\triangle \mathrm{ABC}$ with its sides $\frac{8}{5}$ of the corresponding sides of $\triangle A B C$ draw a ray $B X$ such that $\angle C B X$ is an acute angle and X is on the opposite side of A with respect to $B C$. The minimum number of points to be located at equal distances on the ray $B X$
(a) 5
(b) 8
(c) 13
(d) 3

Sol. (b): To construct a triangle similar to a given triangle ABC with its sides $\frac{8}{5}$ of the corresponding sides of $\triangle \mathrm{ABC}$, the minimum number of parts in which BX is divided in 8 equal parts. Verifies the option (b). Q6. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle, the angle between them should be
(a) 135°
(b) 90°
(c) 60°
(d) 120°

Sol. (d): We know that tangent and radius at contact point are perpendicular to each other.
So, $\angle \mathrm{P}$ and $\angle \mathrm{Q}$ in quadrilateral TPOQ formed by tangents and radii will be of 90° each. So, the sum of $\angle \mathrm{T}+\angle \mathrm{O}=180^{\circ}$ as $\mathrm{T}=60^{\circ}$ (Given)
$\therefore \angle \mathrm{O}=180^{\circ}-60^{\circ}=120^{\circ}$
Verifies the option (d).

EXERCISE 10.2

Write True or False and give reason for your answer in each of the following:
Q1. By geometrical construction, it is possible to divide a line segment in ratio $\sqrt{3}: \frac{1}{\sqrt{ }}$. 3

Sol. True: On multiplying or dividing a given ratio by a real number, the ratio remains same.
On multiplying the given ratio by $\sqrt{3}$ we get $\sqrt{3} \cdot \sqrt{3}: \frac{1}{\sqrt{3}} \cdot \sqrt{3}$ or $3: 1$
Hence, the given ratio $\sqrt{3}: \frac{1}{\sqrt{3}}$ is possible to divide a line in ratio $3: 1$ in place of $\sqrt{3}: \frac{1}{\sqrt{3}}$.
Q2. To construct a triangle similar to a given $\triangle \mathrm{ABC}$ with its sides $\frac{7}{3}$ of the corresponding sides of $\triangle A B C$, draw a ray $B X$ making acute angle with $B C$ and X lies on the opposite side of A with respect to $B C$. The points $B_{1}, B_{2}, \ldots, B_{7}$ are located at equal distances on $B X, B_{3}$ is joined to C and then a line segment $B_{6} C^{\prime}$ is drawn parallel to $B_{3} C$ where C^{\prime} lies on $B C$ produced. Finally, the line segment $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ is drawn parallel to AC .
Sol. False: Given ratio is $\frac{7}{3}>1$ so, the resulting triangle will be larger than given as $B_{7} C^{\prime} \| B_{3} C$ and $B X$ is equally divided into 7 parts as $(7>3)$.
Construction: (i) Draw given triangle with given specifications.
(ii) Draw an acute angle CBX.
(iii) Divide BX into 7 equal parts and mark them $B_{1}, B_{2}, B_{3}, \ldots B_{7}$.
(iv) Produce BC and BA as shown in figure.
(v) Join $B_{3} C$.
(vi) Draw $\mathrm{B}_{7} \mathrm{C}^{\prime} \| \mathrm{B}_{3} \mathrm{C}, \mathrm{C}^{\prime}$ is on BC produced.
(vii) Draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{AC}$. A^{\prime} on BA produced $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is required triangle i.e., $\frac{\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}}{\Delta \mathrm{ABC}}=\frac{3}{7}$.
Here, $\mathrm{B}_{7} \mathrm{C}^{\prime}$ || $\mathrm{B}_{3} \mathrm{C}$. But in Question
 $B_{6} C^{\prime} \| B_{3} C$, which is false.
Q3. A pair of tangents can be constructed from a point P to a circle of radius 3.5 cm situated at a distance of 3 cm from the centre.
Sol. False: Any tangent on a circle can be drawn only if the distance of point to draw tangent is equal to or more than radius of circle. Here, radius of circle is 3.5 cm and point is at 3 cm from centre which is inside the circle. So, no tangent can be drawn if point is inside the circle.
Q4. A pair of tangents can be constructed to a circle inclined at an angle of 170°.
Sol. True: A pair of tangents can be constructed if the angle between the tangents is between zero and less than 180°. Because the sum of angles between tangents and radii on tangent are supplementary.
So, a pair of tangents can be constructed to circle inclined at an angle of 170°.

EXERCISE 10.3

Q1. Draw a line segment of length 7 cm . Find a point P on it which divides it in the ratio $3: 5$.

Sol. Steps of construction:

(i) Draw a line-segment $\mathrm{AB}=7 \mathrm{~cm}$.
(ii) Draw AX II BY such that $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are acute angles.
(iii) Divide AX and BY in 3 and 5 parts equally by compass and mark $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$, B_{3}, B_{4} and B_{5} respectively.
(iv) Join $\mathrm{A}_{3} \mathrm{~B}_{5}$ which intersect $A B$ at P and divides $A P$: $\mathrm{PB}=3: 5$.

Hence, P is the required point on AB which divide it in $3: 5$.
Verification (Justification): In $\Delta \mathrm{AA}_{3} \mathrm{P}$ and $\Delta \mathrm{BB}_{5} \mathrm{P}$

\[

\]

Hence, verified.
Q2. Draw a right angled $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=12 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$, and $\angle \mathrm{B}=90^{\circ}$. Construct a triangle similar to it and of scale factor $\frac{2}{3}$. Is the new triangle also a right triangle?
Sol. Here, scale factor or ratio factor is $\frac{2}{3}<1$, so triangle to be constructed will be smaller than given $\triangle A B C$.

Steps of construction:

(i) Draw $\mathrm{BC}=12 \mathrm{~cm}$.
(ii) Draw $\angle \mathrm{CBA}=90^{\circ}$ with scale and compass.
(iii) Cut $\mathrm{BA}=5 \mathrm{~cm}$ such that $\angle \mathrm{ABC}=90^{\circ}$.

(iv) Join $\mathrm{AC} . \triangle \mathrm{ABC}$ is the given triangle.
(v) Draw an acute $\angle C B Y$ such that A and Y are in opposite direction with respect to $B C$.
(vi) Divide $B Y$ in 3 equal segments by marking arc at same distance at $\mathrm{B}_{1}, \mathrm{~B}_{2}$ and B_{3}.
(vii) Join $\mathrm{B}_{3} \mathrm{C}$.
(viii) Draw $B_{2} C^{\prime} \| B_{3} C$ by making equal alternate angles at B_{2} and B_{3}.
(ix) From point C^{\prime}, draw $C^{\prime} A^{\prime} \| C A$ by making equal alternate angles at C and C^{\prime}.
$\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle of scale factor $\frac{2}{3}$. This triangle is also a right triangle.
Q3. Draw a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{CA}=5 \mathrm{~cm}$ and $\mathrm{AB}=4 \mathrm{~cm}$. Construct a triangle similar to it and of scale factor $\frac{5}{3}$.
Sol. Here, scale factor is $\frac{5}{3}>1$, so the resulting figure will be larger.

Steps of construction:

(i) Draw $\mathrm{BC}=6 \mathrm{~cm}$.
(ii) Draw $\operatorname{arc} \mathrm{BA}_{1}=4 \mathrm{~cm}$ from B .
(iii) Draw arc $\mathrm{CA}_{2}=5 \mathrm{~cm}$ from C
(iv) ArcCA_{2} and BA_{1} intersect at A .
(v) Join AB and AC .
(vi) Draw acute angle CBX below BC .
(vii) Cut BX into equal parts by arcs at B_{1}, $\mathrm{B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$ and B_{5}.
(viii) Join $\mathrm{B}_{3} \mathrm{C}$.

(ix) Draw $\mathrm{B}_{5} \mathrm{C}^{\prime} \| \mathrm{B}_{3} \mathrm{C}$ by making alternate angles. C^{\prime} is on BC produced.
(x) Draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{CA}$ which meet BA produced at A^{\prime}. Now, $\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

Justification:

$$
\begin{aligned}
& \Delta \mathrm{BCB}_{3} \sim \Delta \mathrm{BC}^{\prime} \mathrm{B}_{5} \\
& \therefore \quad \frac{\mathrm{BB}_{3}}{\mathrm{BB}_{5}}=\frac{\mathrm{BC}}{\mathrm{BC}^{\prime}} \\
& \text { [By AA criterion of similarity] } \\
& {\left[\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\ldots x\right.} \\
& \left.\therefore \mathrm{BB}_{3}=3 x \text { and } \mathrm{BB}_{5}=5 x\right] \\
& \Rightarrow \quad \frac{3 x}{5 x}=\frac{\mathrm{BC}}{\mathrm{BC}^{\prime}} \\
& \triangle \mathrm{ABC} \sim \Delta \mathrm{~A}^{\prime} \mathrm{BC}^{\prime} \\
& \text { [By AA criterion of similarity] } \\
& \Rightarrow \quad \frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}}{\mathrm{AC}}=\frac{\mathrm{BC}}{\mathrm{BC}^{\prime}}
\end{aligned}
$$

Q4. Construct a pair of tangents to a circle of radius 4 cm from a point which is at a distance of 6 cm from the centre of circle.
Sol. The distance of point from which tangents to be drawn should be more than radius so that tangents can be drawn.

Steps of construction:

(i) Draw a line-segment OT $=6 \mathrm{~cm}$.
(ii) Draw a circle of radius 4 cm taking O as centre.
(iii) Draw perpendicular bisector EF of T OT which meets OT at M.
(iv) Taking MT as radius and M as centre draw a circle C_{2} which intersect C_{1} at P and Q. Join TP and TQ. Then, TP and $T Q$ are the required tangents.

EXERCISE 10.4

Q1. Two line-segments $A B$ and $A C$ include an angle of 60°, where $A B=5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$. Locate points P and Q on $A B$ and $A C$ respectively such that $\mathrm{AP}=\frac{3}{4} \mathrm{AB}$ and $\mathrm{AQ}=\frac{1}{4} \mathrm{AC}$. Join P and Q and measure the length PQ .
Sol. (i) Draw $\angle \mathrm{BAC}=60^{\circ}$ such that $\mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=7 \mathrm{~cm}$.
(ii) Draw acute angle CAX and mark X_{1}, X_{2}, X_{3} and X_{4} equally spaced.
(iii) Join $\mathrm{X}_{4} \mathrm{C}$.
(iv) Draw $\mathrm{X}_{1} \mathrm{Q} \| \mathrm{X}_{4} \mathrm{C}$.
(v) Similarly, draw $\angle B A Y$ and divide AY in 4 equal parts i.e., Y_{1}, Y_{2}, Y_{3} and Y_{4}.
(vi) Join $Y_{4} B$ and draw $Y_{3} P \| Y_{4} B$.
(vii) Join PQ and measure it.
(viii) PQ is equal to 3.3 cm .

Q2. Draw a parallelogram ABCD in which $B C=5 \mathrm{~cm}, A B=3 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Divide it into triangles
 $B C D$ and $\triangle A B D$, by diagonal $B D$. Construct the triangle ${B D^{\prime}}^{\prime} C^{\prime}$ similar to $\triangle \mathrm{BDC}$ with scale factor $\frac{4}{3}$. Draw the line segment $\mathrm{D}^{\prime} \mathrm{A}^{\prime}$ parallel to DA, where A^{\prime} lies on extended side $B A$. Is $A^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime}$ a parallelogram?

Sol. Steps of construction:

(i) Draw a line segment $\mathrm{AB}=3 \mathrm{~cm}$.
(ii) Make $\angle \mathrm{ABC}=60^{\circ}$ such that $\mathrm{BC}=5 \mathrm{~cm}$.
(iii) Draw $\mathrm{CD} \| \mathrm{AB}$ and $\mathrm{AD} \| \mathrm{BC}$, $\square \mathrm{ABCD}$ is the required parallelogram.
(iv) Join diagonal BD and produce it.
(v) Make acute angle CBX on opposite of D with respect to $B C$.
(vi) Mark (equi spaced) $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$ by compass.
(vii) Join $\mathrm{B}_{3} \mathrm{C}$ and draw $\mathrm{B}_{3} \mathrm{C} \| \mathrm{B}_{4} \mathrm{C}^{\prime}$ on BC produced.
(viii) Again, draw $\mathrm{C}^{\prime} \mathrm{D}^{\prime} \| \mathrm{CD}$, where D^{\prime} is on BD produced.
(ix) Now, draw $\mathrm{D}^{\prime} \mathrm{A}^{\prime}$ II DA where A^{\prime}
 is on BA produced. Parallelogram $\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime}$ ' is similar to parallelogram ABCD with scale factor $\frac{4}{3}$.
Q3. Draw two concentric circles of radii 3 cm and 5 cm . Taking a point on outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation.

Sol. Steps of construction:

(i) Draw two concentric circles $\mathrm{C}_{1}, \mathrm{C}_{2}$ of radii 3 cm and 5 cm respectively taking ' O ' as centre.
(ii) Draw perpendicular bisector AB of OT. T is any point on C_{2}.
(iii) Draw circle C_{3} taking radius $\mathrm{TM}=\mathrm{OM}$ and M as centre.
(iv) Circle C_{3} intersect the circle C_{1} at P and Q. Join TP and TQ. These are the required tangents. $\mathrm{TP}=\mathrm{TQ}=4.1 \mathrm{~cm}$
 by measuring.
Mathematically length of tangent: Join OP. OP and TP are radius and tangent respectively at contact point P . So, $\angle \mathrm{TPO}=90^{\circ}$.
By Pythagoras theorem in $\triangle \mathrm{TPO}$,

$$
\begin{array}{rlrl}
& & \mathrm{PT}^{2} & =\mathrm{OT}^{2}-\mathrm{OP}^{2}=5^{2}-3^{2}=25-9=16 \\
\Rightarrow & \mathrm{PT} & =4 \mathrm{~cm}
\end{array}
$$

Difference in measurement and by mathematical calculation

$$
\mathrm{PT}=4.1 \mathrm{~cm}-4 \mathrm{~cm}=0.1 \mathrm{~cm} .
$$

Q4. Draw an isosceles $\triangle A B C$ in which $A B=A C=6 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$. Construct a triangle PQR similar to $\triangle \mathrm{ABC}$ in which $\mathrm{PQ}=8 \mathrm{~cm}$. Also justify the construction.
Sol. We have to draw
$\triangle \mathrm{PQR} \sim \Delta \mathrm{ABC}$

$$
\begin{array}{rlrl}
& & \mathrm{PQ} & =8 \mathrm{~cm} \\
& \therefore & \frac{\mathrm{PQ}}{\mathrm{AB}} & =\frac{8}{6}=\frac{4}{3} \quad(\because \mathrm{AB}=6 \mathrm{~cm}) \\
\text { So, } & \mathrm{PQ} & =\mathrm{QR}=8 \mathrm{~cm}
\end{array}
$$

So, we have to draw $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$ with scale factor $\frac{4}{3}>1$ resulting $\triangle \mathrm{PQR}$ will be larger than $\triangle \mathrm{ABC}$.

Steps of Construction:

(i) Draw $\mathrm{BC}=5 \mathrm{~cm}$
(ii) Draw two arcs of 6 cm each from B
 and C in same direction let it be upside.
(iii) Join AB and AC .
(iv) Draw acute $\angle \mathrm{CBX}$ and mark $\mathrm{B}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$ with compass.
(v) Join $B_{3} C$ and draw $B_{4} R \| B_{3} C, R$ is on $B C$ produced.
(vi) Again, draw RP \| $\mid \mathrm{CA}$. P is on BA produced.

Therefore, $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$ with $\mathrm{PQ}=\mathrm{PR}=8 \mathrm{~cm}$. It's scale factor is $\frac{4}{3}$.
Q5. Draw a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$. Construct a triangle similar to $\triangle \mathrm{ABC}$ with scale factor $\frac{5}{7}$. Justify the construction.
Sol. Scale factor $\frac{5}{7}<1$, so the resulting Δ will be smaller than $\triangle \mathrm{ABC}$.

Steps of construction:

(i) Draw $\mathrm{AB}=5 \mathrm{~cm}$.
(ii) Draw $\angle \mathrm{ABC}=60^{\circ}$, cut $\mathrm{BC}=6 \mathrm{~cm}$ and join AC .
(iii) Draw acute $\angle \mathrm{BAX}$ and mark it equispaced marks $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{7}$ as shown in figure.
(iv) Join $\mathrm{A}_{7} \mathrm{~B}$ and draw $\mathrm{A}_{5} \mathrm{~B}^{\prime} \| \mathrm{A}_{7} \mathrm{~B} . \mathrm{B}^{\prime}$ is on segment $A B$.
Draw $B^{\prime} C^{\prime} \| B C$, point C^{\prime} is on $A C$.
$\Delta \mathrm{AB}^{\prime} \mathrm{C}^{\prime} \sim \Delta \mathrm{ABC}$ with scale factor $\frac{5}{7}$.

Justification: In $\triangle A_{5} B^{\prime}$ and $A_{7} B$,
$\mathrm{A}_{7} \mathrm{~B} \| \mathrm{A}_{5} \mathrm{~B}^{\prime}$

$$
\therefore \quad \begin{aligned}
\angle \mathrm{A}_{5} & =\angle \mathrm{A}_{7} \\
\angle \mathrm{BAA}_{5} & =\angle \mathrm{BAA}_{7}
\end{aligned}
$$

[Corresponding $\angle \mathrm{s}$]
[Common]
$\therefore \quad \Delta \mathrm{AA}_{5} \mathrm{~B}^{\prime} \sim \triangle \mathrm{AA}_{7} \mathrm{~B} \quad[\mathrm{By} \mathrm{AA}$ criterion of similarity]
$\Rightarrow \quad \frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{AA}_{5}}{\mathrm{AA}_{7}}=\frac{5 x}{7 x}=\frac{5}{7}$
where $x=\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\ldots \mathrm{A}_{6} \mathrm{~A}_{7}$
Similarly, $\quad \Delta \mathrm{AB}^{\prime} \mathrm{C}^{\prime} \sim \triangle \mathrm{ABC} \quad$ [By AA criterion of similarity]
$\Rightarrow \quad \frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{AC}^{\prime}}{\mathrm{AC}}=\frac{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}{\mathrm{BC}}$
$\Rightarrow \quad \frac{5}{7}=\frac{\mathrm{AC}^{\prime}}{\mathrm{AC}}=\frac{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}{\mathrm{BC}}$
Hence, $\Delta \mathrm{AB}^{\prime} \mathrm{C}^{\prime} \sim \Delta \mathrm{ABC}$ with scale factor $\frac{5}{7}$.
Q6. Draw a circle of radius 4 cm . Construct a pair of tangents to it, the angle between which is 60°. Also, justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents.
Sol. Angle between tangents is 60°. So angles between their radii is $180^{\circ}-60^{\circ}=120^{\circ}$.
As the angles between tangents and their corresponding radii are supplementary.

Steps of construction:

(i) Draw a circle of radius 4 cm .
(ii) Draw any diameter POS.
(iii) Draw OQ making $\angle \mathrm{AOC}=120^{\circ}$.
(iv) Draw tangent at P by drawing $\angle \mathrm{OPT}=90^{\circ}$.
(v) Similarly, draw \angle OQT equal to 90° to draw tangent.
(vi) Both PT, QT tangents intersect
 at T and make angle of 60°.
Hence, the two tangents on circle are TP and TQ inclined at 60°.
Justification: Because the radius OP and tangent PT at contact point makes angle $\angle \mathrm{TPO}=90^{\circ}$.
Similarly, $\quad \angle \mathrm{TQO}=90^{\circ}$
In quadrilateral TPOQ,
$\angle \mathrm{T}+\angle \mathrm{P}+\angle \mathrm{O}+\angle \mathrm{Q}=360^{\circ}$
$\Rightarrow \angle \mathrm{T}+90^{\circ}+120^{\circ}+90^{\circ}=360^{\circ} \quad\left[\because \angle \mathrm{O}=120^{\circ}\right.$ by construction $]$
$\Rightarrow \quad \angle \mathrm{T}=360^{\circ}-300^{\circ}$
$\Rightarrow \quad \angle \mathrm{T}=60^{\circ}$.
Hence, verified.
Q7. Draw a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$, and $\mathrm{AC}=9 \mathrm{~cm}$. Construct a triangle similar to $\triangle \mathrm{ABC}$ with scale factor $\frac{3}{2}$. Justify the
construction. Are the two triangles congruent? Note that, all the three angles and two sides of the two triangles are equal.
Sol. Scale factor $\frac{3}{2}>1$
So, the resulting figure will be greater than $\triangle \mathrm{ABC}$.

Steps of construction:

(i) Draw line segment $\mathrm{BC}=6 \mathrm{~cm}$.
(ii) From B as centre, draw an arc A_{1} of 6 cm .
(iii) From C as centre, draw another arc A_{2} of 9 cm .
(iv) Arcs A_{1} and A_{2} intersect at A . Join A to B and C .
(v) Make an acute angle of $\angle C B X$ on other side of A.
(vi) Make the equispaced marks $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ with compass.
(vii) Join $\mathrm{B}_{2} \mathrm{C}$ and draw $\mathrm{B}_{3} \mathrm{C}^{\prime} \| \mathrm{B}_{2} \mathrm{C}$, where C^{\prime} is on BC produced.
(viii) Draw $\mathrm{CA} \| \mathrm{C}^{\prime} \mathrm{A}^{\prime}$, where A^{\prime} is on BA produced. $\therefore \triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \triangle \mathrm{ABC}$ with scale factor $\frac{3}{2}$.
Justification: In $\Delta \mathrm{BB}_{3} \mathrm{C}^{\prime}$ and $\Delta \mathrm{BB}_{2} \mathrm{C}$

$$
\angle \mathrm{B}=\angle \mathrm{B}
$$

$$
\begin{array}{lcr}
& \mathrm{B}_{3} \mathrm{C}^{\prime} \| \mathrm{B}_{2} \mathrm{C} & \text { [By construction] } \\
\therefore & \angle \mathrm{BB}_{2} \mathrm{C}=\angle \mathrm{BB}_{3} \mathrm{C}^{\prime} & \text { [Corresponding angles) } \\
\therefore & \Delta \mathrm{BB}_{3} \mathrm{C}^{\prime} \sim \Delta \mathrm{BB}_{2} \mathrm{C} & \text { [By AA criterion of similarity] } \\
\Rightarrow & \frac{\mathrm{BC}^{\prime}}{\mathrm{CB}}=\frac{\mathrm{BB}_{3}}{\mathrm{BB}_{2}}=\frac{3 x}{2 x}=\frac{3}{2} & {\left[\because \mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=x\right]} \\
\Rightarrow & \frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{3}{2} &
\end{array}
$$

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$,

$$
\angle B=\angle B
$$

[Common]
$\because \quad A^{\prime} C^{\prime} \| A C$
$\therefore \quad \angle A^{\prime} C^{\prime} B=\angle A C B$
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
$\Rightarrow \quad \frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}}{\mathrm{AC}}=\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{C}^{\prime} \mathrm{B}}{\mathrm{BC}}$
$\Rightarrow \quad \frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}}{\mathrm{AC}}=\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{3}{2}$
[Corresponding angles] [By AA criterion of similarity]

Hence, proved.

