EXERCISE

SHORT ANSWER TYPE QUESTIONS

Q1. Let $A=\{-1,2,3\}$ and $B=\{1,3\}$. Determine
(i) $\mathrm{A} \times \mathrm{B}$
(ii) $\mathrm{B} \times \mathrm{A}$
(iii) $\mathrm{B} \times \mathrm{B}$
(iv) $\mathrm{A} \times \mathrm{A}$

Sol. Given that: $\mathrm{A}=\{-1,2,3\}$ and $\mathrm{B}=\{1,3\}$
(i) $\mathrm{A} \times \mathrm{B}=\{(-1,1),(-1,3),(2,1),(2,3),(3,1),(3,3)\}$
(ii) $\mathrm{B} \times \mathrm{A}=\{(1,-1),(3,-1),(1,2),(3,2),(1,3),(3,3)\}$
(iii) $\mathrm{B} \times \mathrm{B}=\{1,3\} \times\{1,3\}=\{(1,1),(1,3),(3,1),(3,3)\}$
(iv) $\mathrm{A} \times \mathrm{A}=\{-1,2,3\} \times\{-1,2,3\}$

$$
=\{(-1,-1),(-1,2),(-1,3),(2,-1),(2,2),(2,3),(3,-1),
$$

$$
(3,2),(3,3)\}
$$

Q2. If $\mathrm{P}=\{x: x<3, x \in \mathrm{~N}\}, \mathrm{Q}=\{x: x \leq 2, x \in \mathrm{~W}\}$. Find $(\mathrm{P} \cup \mathrm{Q}) \times(\mathrm{P} \cap \mathrm{Q})$ where W is the set of whole numbers.
Sol. Given that:

$$
\begin{aligned}
& \mathrm{P}=\{x: x<3, x \in \mathrm{~N}\} \Rightarrow \mathrm{P}=\{1,2\} \\
& \mathrm{Q}=\{x: x \leq 2, x \in \mathrm{~W}\} \Rightarrow \mathrm{Q}=\{0,1,2\}
\end{aligned}
$$

Now $\quad(P \cup Q)=\{0,1,2\}$ and $(P \cap Q)=\{1,2\}$
$\therefore(P \cup Q) \times(P \cap Q)=\{(0,1),(0,2),(1,1),(1,2),(2,1),(2,2)\}$
Q3. If $\mathrm{A}=\{x: x \in \mathrm{~W}, x<2\}, \mathrm{B}=\{x: x \in \mathrm{~N}, 1<x<5\}$, and $\mathrm{C}=\{3,5\}$, find
(i) $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})$
(ii) $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})$

Sol. Given that: $\mathrm{A}=\{x: x \in \mathrm{~W}, x<2\} \Rightarrow \mathrm{A}=\{0,1\}$

$$
\begin{aligned}
& \mathrm{B}=\{x: x \in \mathrm{~N}, 1<x<5\} \Rightarrow \mathrm{B}=\{2,3,4\} \\
& \mathrm{C}=\{3,5\}
\end{aligned}
$$

$$
\begin{equation*}
A \times(B \cap C)=\{0,1\} \times\{3\}=\{(0,3),(1,3)\} \tag{i}
\end{equation*}
$$

(ii) $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=\{0,1\} \times\{2,3,4,5\}$

$$
=\{(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)\}
$$

Q4. In each of the following cases, find a and b
(i) $(2 a+b, a-b)=(8,3)$
(ii) $\left(\frac{a}{4}, a-2 b\right)=(0,6+b)$

Sol. (i) Given that: $(2 a+b, a-b)=(8,3)$
Comparing the domains and ranges, we get

$$
\begin{align*}
2 a+b & =8 \tag{i}\\
a-b & =3 \tag{ii}
\end{align*}
$$

Solving (i) and (ii) we get $a=\frac{11}{3}$ and $b=\frac{2}{3}$
(ii) Given that: $\left(\frac{a}{4}, a-2 b\right)=(0,6+b)$

Comparing the domains and ranges, we get

$$
\begin{array}{ll}
\frac{a}{4}=0 \Rightarrow a=0, a-2 b=6+b \\
\Rightarrow & a-3 b=6 \Rightarrow 0-3 b=6 \\
& \therefore
\end{array}
$$

So, $a=0, b=-2$.
Q5. Given $\mathrm{A}=\{1,2,3,4,5\}, \mathrm{S}=\{(x, y): x \in \mathrm{~A}, y \in \mathrm{~A}\}$. Find the ordered pairs which satisfy the condition given below:
(i) $x+y=5$
(ii) $x+y<5$
(iii) $x+y>8$

Sol. Given that: $\quad \mathrm{A}=\{1,2,3,4,5\}$
and $\quad S=\{(x, y): x \in A, y \in A\}$
(i) $x+y=5$, so, the ordered pairs satisfying the given conditions are $(1,4),(4,1),(2,3),(3,2)$.
(ii) $x+y<5$, so, the ordered pairs satisfying the given conditions are $(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)$.
(iii) $x+y>8$, so the ordered pairs satisfying the given conditions are $(4,5),(5,4),(5,5)$.
Q6. Given $\mathrm{R}=\left\{(x, y): x, y \in \mathrm{~W}, x^{2}+y^{2}=25\right\}$, find the domain and range of R .
Sol. Given that: $\quad \mathrm{R}=\left\{(x, y): x, y \in \mathrm{~W}, x^{2}+y^{2}=25\right\}$
So, the ordered pairs satisfying the given condition $x^{2}+y^{2}=25$ are $(0,5),(3,4),(5,0),(4,3) \quad\{\because x, y \in W\}$ Hence, the domain $=\{0,3,4,5\}$ and the range $=\{0,3,4,5\}$.
Q7. If $\mathrm{R}_{1}=\{(x, y) \mid y=2 x+7$ where $x \in \mathrm{R}$ and $-5 \leq x \leq 5\}$ is a relation. Then find the domain and range.
Sol. Given that: $\mathrm{R}_{1}=\{(x, y) \mid y=2 x+7$ where $x \in \mathrm{R}$ and $-5 \leq x \leq 5\}$ Here domain is $-5 \leq x \leq 5 \Rightarrow\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$ and $y=2 x+7$.
So, the values of y for the corresponding given values of x are $\{-3,-1,1,3,5,7,9,11,13,15,17\}$
Hence, the domain of $\mathrm{R}_{1}=[-5,5]$ and range of $\mathrm{R}_{1}=[-3,17]$
Q8. If $\mathrm{R}_{2}=\left\{(x, y) \mid x\right.$ and y are integers and $\left.x^{2}+y^{2}=64\right\}$ is a relation, then find R_{2}.
Sol. Given that: $x^{2}+y^{2}=64, x, y \in Z$
Since the sum of the squares of two integers is 64
$\therefore \quad$ For $x=0, y= \pm 8$
For $x= \pm 8, y=0$
Hence, $\mathrm{R}_{2}=\{(0,8),(0,-8),(8,0),(-8,0)\}$

Q9. If $\mathrm{R}_{3}=\{(x,|x|) \mid x$ is a real number $\}$ is a relation, then find domain and range of R_{3}.
Sol. Given that: $\quad \mathrm{R}_{3}=\{(x,|x|) \mid x$ is a real number $\}$
Clearly, domain of $\mathrm{R}_{3}=\mathrm{R}$
and Range of $R_{3}=(0, \infty)$

$$
\left[\because|x|=\mathrm{R}_{+}\right]
$$

Q10. Is the given relation a function? Give reason for your answer:
(i) $h=\{(4,6),(3,9),(-11,6),(3,11)\}$
(ii) $f=\{(x, x) \mid x$ is a real number $\}$
(iii) $g=\left\{\left.\left(n, \frac{1}{n}\right) \right\rvert\, n\right.$ is a positive integer $\}$
(iv) $s=\left\{\left(n, n^{2}\right) \mid n\right.$ is a positive integer $\}$
(v) $t=\{(x, 3) \mid x$ is a real number $\}$

Sol. Given that: $(i) h=\{(4,6),(3,9),(-11,6),(3,11)\}$
Since in the given relation 3 has two images 9 and 11 . So, h is not a function.
(ii) $f=\{(x, x) \mid x$ is a real number $\}$. Here, we observe that for every element of domain has a unique image. So, f is a function.
(iii) Given that: $g=\left\{\left.\left(n, \frac{1}{n}\right) \right\rvert\, n\right.$ is a positive integer $\}$.

Here, we observe that n is a positive integer so, for every element of domain, there is a unique $\frac{1}{n}$ image. Hence g is a function.
(iv) Given that: $\mathrm{S}=\left\{\left(n, n^{2}\right) \mid n\right.$ is a positive integer $\}$

Here, we observe that the square of any integer is a unique number. So, for every element element in the domain there is unique image. Hence, S is a function.
(v) Given that: $t=\{(x, 3) \mid x$ is a real number $\}$

Here, we observe that for every real element in the domain, there is a constant number 3 . Hence t is a constant function.
Q11. If f and g are real functions defined by $f(x)=x^{2}+7$ and $g(x)=3 x+5$, find each of the following:
(i) $f(3)+g(-5)$
(ii) $f\left(\frac{1}{2}\right) \times g(14) \quad$ (iii) $f(-2)+g(-1)$
(iv) $f(t)-f(-2)$
(v) $\frac{f(t)-f(5)}{t-5}$, if $t \neq 5$

Sol. Given that: $\quad f(x)=x^{2}+7$ and $g(x)=3 x+5$

$$
\begin{align*}
f(3)+g(-5) & =\left[(3)^{2}+7\right]+[3(-5)+5] \tag{i}\\
& =(9+7)+(-15+5)=16-10=6 \\
\text { Hence, } f(3)+g(-5) & =6
\end{align*}
$$

$$
\begin{align*}
f\left(\frac{1}{2}\right) \times g(14) & =\left[\left(\frac{1}{2}\right)^{2}+7\right] \times[3 \times 14+5] \tag{ii}\\
& =\left(\frac{1}{4}+7\right) \times(42+5)=\frac{29}{4} \times 47=\frac{1363}{4}
\end{align*}
$$

Hence, $f\left(\frac{1}{2}\right) \times g(14)=\frac{1363}{4}$

$$
\begin{equation*}
f(-2)+g(-1)=\left[(-2)^{2}+7\right]+[3(-1)+5] \tag{iii}
\end{equation*}
$$

$$
=(4+7)+(-3+5)=11+2=13
$$

Hence, $f(-2)+g(-1)=13$
(iv)

$$
\begin{aligned}
f(t)-f(-2) & =\left(t^{2}+7\right)-\left[(-2)^{2}+7\right]=t^{2}+7-11 \\
& =t^{2}-4
\end{aligned}
$$

Hence, $f(t)-f(-2)=t^{2}-4$.
(v) $\frac{f(t)-f(5)}{t-5}, t \neq 5=\frac{\left(t^{2}+7\right)-\left((5)^{2}+7\right)}{t-5}$

$$
=\frac{t^{2}+7-32}{t-5}=\frac{t^{2}-25}{t-5}=t+5
$$

Hence, $\frac{f(t)-f(5)}{t-5}, t \neq 5=t+5$.
Q12. Let f and g be real functions defined by $f(x)=2 x+1$ and $g(x)=4 x-7$
(i) For what real numbers, $f(x)=g(x)$?
(ii) For what real numbers, $f(x)<g(x)$?

Sol. Given that: $f(x)=2 x+1$ and $\mathrm{g}(x)=4 x-7$
(i) For

$$
f(x)=g(x) \text {, we get }
$$

$2 x+1=4 x-7 \quad \Rightarrow \quad 2 x-4 x=-7-1$

$$
\begin{aligned}
\Rightarrow & -2 x & =-8 \\
\Rightarrow & x & =4 . \text { Hence, the required real number is } 4 .
\end{aligned}
$$

(ii) For

$$
f(x)<g(x) \text {, we get }
$$

$$
2 x+1<4 x-7
$$

$$
\Rightarrow \quad 2 x-4 x<-1-7 \Rightarrow-2 x<-8 \Rightarrow 2 x>8
$$

$$
\therefore \quad x>4
$$

Hence, the required real number is $x>4$.
Q13. If f and g are two real valued functions defined as $f(x)=2 x+1$, $g(x)=x^{2}+1$ then find
(i) $f+g$
(ii) $f-g$
(iii) $f \cdot g$
(iv) $\frac{f}{g}$

Sol. Given that: $f(x)=2 x+1$ and $g(x)=x^{2}+1$
(i) $f+g=f(x)+g(x) \Rightarrow 2 x+1+x^{2}+1 \Rightarrow x^{2}+2 x+2$
(ii) $f-g=f(x)-g(x) \Rightarrow(2 x+1)-\left(x^{2}+1\right)=2 x+1-x^{2}-1 \Rightarrow 2 x-x^{2}$
(iii) $f \cdot g=f(x) \cdot g(x) \Rightarrow(2 x+1)\left(x^{2}+1\right) \Rightarrow 2 x^{3}+x^{2}+2 x+1$
(iv) $\frac{f}{g}=\frac{f(x)}{g(x)}=\frac{2 x+1}{x^{2}+1}$

Q14. Express the following functions as set of ordered pairs and determine their range
$f: \mathrm{X} \rightarrow \mathrm{R}, f(x)=x^{3}+1$, where $\mathrm{X}=\{-1,0,3,9,7\}$.
Sol. Given that: $f: X \rightarrow R, f(x)=x^{3}+1$, where $\mathrm{X}=\{-1,0,3,9,7\}$
Here

$$
X=\{-1,0,3,9,7\}
$$

For $x=-1, \quad f(-1)=(-1)^{3}+1=0$
For $x=0, \quad f(0)=(0)^{3}+1=1$
For $x=3, \quad f(3)=(3)^{3}+1=28$
For $x=9, \quad f(9)=(9)^{3}+1=730$
For $x=7 \quad f(7)=(7)^{3}+1=344$
\therefore The ordered pairs are $(-1,0),(0,1),(3,28),(7,344),(9,730)$ and the range $=\{0,1,28,344,730\}$.
Q15. Find the values of x for which the functions $f(x)=3 x^{2}-1$ and $g(x)=3+x$ are equal?
Sol. Given that: $f(x)=3 x^{2}-1$ and $g(x)=3+x$
Since

$$
\begin{equation*}
f(x)=g(x) \tag{given}
\end{equation*}
$$

$\Rightarrow \quad 3 x^{2}-1=3+x \Rightarrow 3 x^{2}-x-4=0$
$\Rightarrow \quad 3 x^{2}-4 x+3 x-4=0 \Rightarrow x(3 x-4)+1(3 x-4)=0$
$\Rightarrow \quad(3 x-4)(x+1)=0 \Rightarrow 3 x-4=0 \quad$ or $\quad x+1=0$
$\Rightarrow \quad 3 x=4$ or $x=-1$
$\therefore \quad x=\frac{4}{3}$
Hence, the value of x are -1 and $\frac{4}{3}$.

LONG ANSWER TYPE QUESTIONS

Q16. Is $g=\{(1,1),(2,3),(3,5),(4,7)\}$ a function? Justify: If this is described by the relation $g(x)=\alpha x+\beta$, then what values should be assigned to α and β ?
Sol. Given that: $\quad g=\{(1,1),(2,3),(3,5),(4,7)\}$
Since every element of the domain in this relations has unique image, so g is a function.
Now

$$
\begin{equation*}
g(x)=\alpha x+\beta \tag{i}
\end{equation*}
$$

For $(1,1)$
$g(1)=\alpha(1)+\beta=1 \Rightarrow \alpha+\beta=1$
For $(2,3) \quad g(2)=\alpha(2)+\beta=3 \Rightarrow 2 \alpha+\beta=3$
Solving eqn. (i) and (ii) we have
$\alpha=2$ and $\beta=-1$
[Note: We can take any other two ordered pairs]
Hence, the value of $\alpha=2$ and $\beta=-1$.

Q17. Find the domain of each of the following functions given by:
(i) $f(x)=\frac{1}{\sqrt{1-\cos x}}$
(ii) $f(x)=\frac{1}{\sqrt{x+|x|}}$
(iii) $f(x)=x|x|$
(iv) $f(x)=\frac{x^{3}-x+3}{x^{2}-1}$
(v) $f(x)=\frac{3 x}{28-x}$

Sol. (i) Given that: $f(x)=\frac{1}{\sqrt{1-\cos x}}$
We know that $-1 \leq \cos x \leq 1$
$\Rightarrow \quad 1 \geq-\cos x \geq-1$
$\Rightarrow \quad 1+1 \geq 1-\cos x \geq-1+1$
$\Rightarrow \quad 2 \geq 1-\cos x \geq 0$
$\Rightarrow \quad 0 \leq 1-\cos x \leq 2$
For real value of domain

$$
\begin{aligned}
& \quad 1-\cos x
\end{aligned} \neq 0 \Rightarrow \quad \cos x \neq 1
$$

Hence, the domain of $f=\mathrm{R}-\{2 n \pi, n \in \mathrm{Z}\}$
(ii) Given that: $f(x)=\frac{1}{\sqrt{x+|x|}}$
$\because \quad x+|x|=x+x=2 x$ if $x \geq 0$
and $\quad x+|x|=x-x=0$ if $x<0$
So far $x<0, f$ is not defined.
Hence, the domain $f=\mathrm{R}^{+}$.
(iii) Given that: $f(x)=x|x|$

It is clear that $f(x)$ is defined for all $x \in \mathrm{R}$.
Hence, the domain of $f=\mathrm{R}$.
(iv) Given that: $f(x)=\frac{x^{3}-x+3}{x^{2}-1}$

Here, $f(x)$ is only defined if $x^{2}-1 \neq 0$

$$
\begin{array}{ll}
\therefore & (x-1)(x+1) \neq 0 \\
\therefore \neq 1, x \neq-1
\end{array}
$$

Hence, the domain of $f=\mathrm{R}-\{-1,1\}$
(v) Given that: $f(x)=\frac{3 x}{28-x}$

Here, $f(x)$ is only defined if $28-x \neq 0 \Rightarrow x \neq 28$
Hence, the domain $=R-\{28\}$.
Q18. Find the range of the following functions given by
(i) $f(x)=\frac{3}{2-x^{2}}$
(ii) $f(x)=1-|x-2|$
(iii) $f(x)=|x-3|$
(iv) $f(x)=1+3 \cos 2 x$

Sol. (i) Given that: $\quad f(x)=\frac{3}{2-x^{2}}$

$$
\begin{array}{rlrl}
\text { Let } y=f(x) & \therefore & y=\frac{3}{2-x^{2}} \\
& \Rightarrow & y\left(2-x^{2}\right)=3 \Rightarrow & 2 y-y x^{2}=3 \\
& \Rightarrow & y x^{2}=2 y-3 \\
& \Rightarrow & & x^{2}=\frac{2 y-3}{y} \Rightarrow x=\sqrt{\frac{2 y-3}{y}}
\end{array}
$$

Here, x is real if $\quad 2 y-3 \geq 0$ and $y \geq 0$

$$
\Rightarrow \quad y \geq \frac{3}{2}
$$

Hence, the range of $f=\left[\frac{3}{2}, \infty\right)$.
(ii) Given that: $\quad f(x)=1-|x-2|$

We know that $|x-2|=-(x-2)$ if $x<2$
and $\quad|x-2|=(x-2)$ if $x \geq 2$
$\therefore \quad-|x-2| \leq 0 \Rightarrow 1-|x-2| \leq 1$
Hence, the range of $f=(-\infty, 1]$.
(iii) Given that: $\quad f(x)=|x-3|$

We know that $|x-3| \geq 0 \Rightarrow f(x) \geq 0$
Hence, the range of $f=[0, \infty)$
(iv) Given that: $f(x)=1+3 \cos 2 x$

We know that $-1 \leq \cos 2 x \leq 1$
$\begin{array}{ll}\Rightarrow & -3 \leq 3 \cos 2 x \leq 3 \Rightarrow-3+1 \leq 1+3 \cos 2 x \leq 3+1 \\ \Rightarrow & -2 \leq 1+3 \cos 2 x \leq 4 \Rightarrow-2 \leq f(x) \leq 4\end{array}$
Hence, the range of $f=[-2,4]$.
Q19. Redefine the function $f(x)=|x-2|+|2+x|,-3 \leq x \leq 3$.
Sol. Given that: $f(x)=|x-2|+|2+x|,-3 \leq x \leq 3$
Since $|x-2|=-(x-2), x<2$
and $|x-2|=(x-2), x \geq 2$ $|2+x|=-(2+x), x<-2$
and $|2+x|=(2+x), x \geq-2$
Now

$$
f(x)=|x-2|+|2+x|,-3 \leq x \leq 3 .
$$

$$
=\left\{\begin{array}{c}
-(x-2)-(2+x),-3 \leq x<-2 \\
-(x-2)+(2+x),-2 \leq x<2 \\
(x-2)+(2+x), \quad 2 \leq x \leq 3
\end{array}\right.
$$

$$
\therefore \quad f(x)=\left\{\begin{aligned}
&-2 x,-3 \leq x<-2 \\
& 4,-2 \leq x<2 \\
& 2 x, 2 \leq x \leq 3
\end{aligned}\right.
$$

Q20. If $f(x)=\frac{x-1}{x+1}$, then show that
(i) $f\left(\frac{1}{x}\right)=-f(x)$
(ii) $f\left(\frac{-1}{x}\right)=\frac{-1}{f(x)}$

Sol. Given that: $f(x)=\frac{x-1}{x+1}$
(i) $f\left(\frac{1}{x}\right)=\frac{\frac{1}{x}-1}{\frac{1}{x}+1}=\frac{1-x}{1+x}=\frac{-(x-1)}{x+1}=-f(x)$

Hence, $f\left(\frac{1}{x}\right)=-f(x)$
(ii) $f\left(\frac{-1}{x}\right)=\frac{-\frac{1}{x}-1}{-\frac{1}{x}+1}=\frac{-\left(\frac{1}{x}+1\right)}{-\left(\frac{1}{x}-1\right)}=\frac{1+x}{1-x}=\frac{1}{\frac{1-x}{1+x}}$

$$
=\frac{1}{-\left(\frac{x-1}{x+1}\right)}=\frac{-1}{f(x)}
$$

Hence, $f\left(-\frac{1}{x}\right)=\frac{-1}{f(x)}$.
Q21. Let $f(x)=\sqrt{x}$ and $g(x)=x$ be two functions defined in the domain $\mathrm{R}^{+} \cup\{0\}$.
(i) $(f+g)(x)$
(ii) $(f-g)(x)$
(iii) $(f . g)(x)$
(iv) $\left(\frac{f}{g}\right)(x)$

Sol. Given that: $f(x)=\sqrt{x}$ and $g(x)=x$ be two functions defined in the domain $\mathrm{R}^{+} \cup\{0\}$

$$
\begin{equation*}
(f+g)(x)=f(x)+g(x)=\sqrt{x}+x \tag{i}
\end{equation*}
$$

(ii)

$$
(f-g)(x)=f(x)-g(x)=\sqrt{x}-x
$$

(iii)
(iv) $\quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\sqrt{x}}{x}=\frac{1}{\sqrt{x}}$.

Q22. Find the domain and range of the function $f(x)=\frac{1}{\sqrt{x-5}}$.
Sol. Given that: $f(x)=\frac{1}{\sqrt{x-5}}$

Here, it is clear that $f(x)$ is real when $x-5>0 \Rightarrow x>5$
Hence, the domain $=(5, \infty)$
Now to find the range put

$$
\begin{array}{rlrl}
& & f(x)=y & =\frac{1}{\sqrt{x-5}} \\
\Rightarrow & & \sqrt{x-5} & =\frac{1}{y} \Rightarrow x-5=\frac{1}{y^{2}} \\
\Rightarrow & x & =\frac{1}{y^{2}}+5
\end{array}
$$

For $x \in(5, \infty), y \in \mathrm{R}^{+}$.
Hence, the range of $f=R^{+}$.
Q23. If $f(x)=y=\frac{a x-b}{c x-a}$, then prove that $f(y)=x$.
Sol. Given that: $f(x)=y=\frac{a x-b}{c x-a}$

$$
\begin{aligned}
f(y) & =\frac{a y-b}{c y-a}=\frac{a\left[\frac{a x-b}{c x-a}\right]-b}{c\left[\frac{a x-b}{c x-a}\right]-a} \\
\Rightarrow \quad f(y) & =\frac{a^{2} x-a b-b c x+a b}{c a x-b c-c a x+a^{2}}=\frac{a^{2} x-b c x}{a^{2}-b c} \\
\Rightarrow \quad f(y) & =\frac{x\left(a^{2}-b c\right)}{a^{2}-b c}=x .
\end{aligned}
$$

Hence, $f(y)=x$.

OBJECTIVE TYPE QUESTIONS

Choose the correct answer out of the given four options in each of the Exercises from 24 to 35 (M.C.Q.)
Q24. Let $n(\mathrm{~A})=m$ and $n(\mathrm{~B})=n$, then the total number of non-empty relations that can be defined from A to B is
(a) m^{n}
(b) $n^{m}-1$
(c) $m n-1$
(d) $2^{m n}-1$

Sol. Given that: $n(\mathrm{~A})=m$ and $n(\mathrm{~B})=n$
$\therefore \quad n(\mathrm{~A} \times \mathrm{B})=n(\mathrm{~A}) . n(\mathrm{~B})=m n$
So, the total number of relations from A to $\mathrm{B}=2^{m n}-1$.
Hence, the correct option is (d).
Q25. If $[x]^{2}-5[x]+6=0$, where [.] denotes the greatest integer function, then
(a) $x \in[3,4]$
(b) $x \in(2,3]$
(c) $x \in[2,3]$
(d) $x \in[2,4)$

Sol. We have

$$
[x]^{2}-5[x]+6=0
$$

$$
\begin{array}{lrl}
\Rightarrow & {[x]^{2}-3[x]-2[x]+6} & =0 \\
\Rightarrow & {[x]([x]-3)-2([x]-3)} & =0 \\
\Rightarrow & ([x]-3)([x]-2) & =0 \quad
\end{array} \quad \Rightarrow \quad[x]=2,3
$$

So, $x \in[2,3]$.
Hence, the correct option is (c).
Q26. Range of $f(x)=\frac{1}{1-2 \cos x}$ is
(a) $\left[\frac{1}{3}, 1\right]$
(b) $\left[-1, \frac{1}{3}\right]$
(c) $(-\infty,-1] \cup\left[\frac{1}{3}, \infty\right)$
(d) $\left[-\frac{1}{3}, 1\right]$

Sol. Given that: $f(x)=\frac{1}{1-2 \cos x}$
We know that $-1 \leq \cos x \leq 1$
$\Rightarrow \quad 1 \geq \cos x \geq-1 \quad \Rightarrow \quad-1 \leq-\cos x \leq 1$
$\Rightarrow \quad-2 \leq-2 \cos x \leq 2 \Rightarrow-2+1 \leq 1-2 \cos x \leq 2+1$
$\Rightarrow \quad-1 \leq 1-2 \cos x \leq 3 \Rightarrow-1 \leq \frac{1}{1-2 \cos x} \leq \frac{1}{3}$
$\Rightarrow \quad-1 \leq f(x) \leq \frac{1}{3}$
So the range of $f(x)=\left[-1, \frac{1}{3}\right]$
Hence, the correct option is (b).
Q27. Let $f(x)=\sqrt{1+x^{2}}$, then
(a) $f(x y)=f(x) \cdot f(y)$
(b) $f(x y) \geq f(x) \cdot f(y)$
(c) $f(x y) \leq f(x) \cdot f(y)$
(d) None of these

Sol. Given that: $f(x)=\sqrt{1+x^{2}} \Rightarrow f(x y)=\sqrt{1+x^{2} y^{2}}$
and $\quad f(x) \cdot f(y)=\sqrt{1+x^{2}} \cdot \sqrt{1+y^{2}}=\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}$
$\because \quad \sqrt{1+x^{2} y^{2}} \leq \sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}$
$\Rightarrow \quad f(x y) \leq f(x) \cdot f(y)$
Hence, the correct option is (c).
Q28. Domain of $\sqrt{a^{2}-x^{2}}(a>0)$ is
(a) $(-a, a)$
(b) $[-a, a]$
(c) $[0, a]$
(d) $(-a, 0]$

Sol. Let

$$
f(x)=\sqrt{a^{2}-x^{2}}
$$

$f(x)$ is defined if $\quad a^{2}-x^{2} \geq 0$

$$
\begin{array}{cc}
\Rightarrow & x^{2}-a^{2} \leq 0 \quad x^{2} \leq a^{2} \\
\Rightarrow & x \leq \pm a \quad \Rightarrow \quad-a \leq x \leq a
\end{array}
$$

\therefore Domain of $f(x)=[-a, a]$
Hence, the correct option is (b).
Q29. If $f(x)=a x+b$, where a and b are integers, $f(-1)=-5$ and $f(3)=3$, then a and b are equal to
(a) $a=-3, b=-1$
(b) $a=2, b=-3$
(c) $a=0, b=2$
(d) $a=2, b=3$

Sol. Given that: $f(x)=a x+b$

$$
\begin{array}{rlrl}
\Rightarrow & & f(-1) & =a(-1)+b \\
\Rightarrow & & -5 & =-a+b \\
\Rightarrow & & a-b & =5 \\
\Rightarrow & & f(3) & =3 a+b \\
\Rightarrow & & 3 & =3 a+b \\
\Rightarrow & 3 a+b & =3 \tag{ii}
\end{array}
$$

On solving eqn. (i) and (ii), we get $a=2, b=-3$
Hence, the correct option is (b).
Q30. The domain of the function f defined by
$f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^{2}-1}}$ is equal to
(a) $(-\infty,-1) \cup(1,4]$
(b) $(-\infty,-1] \cup(1,4]$
(c) $(-\infty,-1) \cup[1,4]$
(d) $(-\infty,-1) \cup[1,4)$

Sol. Given that: $f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^{2}-1}}$
$f(x)$ is defined if

$$
\begin{array}{cccc}
& 4-x \geq 0 & \text { or } & x^{2}-1>0 \\
\Rightarrow & -x \geq-4 & \text { or } & (x-1)(x+1)>0 \\
\Rightarrow & x \leq 4 & \text { or } & x<-1 \text { and } x>1
\end{array}
$$

\therefore Domain of $f(x)$ is $(-\infty,-1) \cup(1,4]$
Hence, the correct option is (a).
Q31. The domain and range of the real function f defined by $f(x)=\frac{4-x}{x-4}$ is given by
(a) Domain $=\mathbf{R}$, Range $=\{-1,1\}$
(b) Domain $=\mathbf{R}-\{1\}$, Range $=\mathbf{R}$
(c) Domain $=\mathbf{R}-\{4\}$, Range $=\mathbf{R}-\{-1\}$
(d) Domain $=\mathbf{R}-\{-4\}$, Range $=\{-1,1\}$

Sol. Given that: $f(x)=\frac{4-x}{x-4}$

We know that $f(x)$ is defined if $x-4 \neq 0 \Rightarrow x \neq 4$
So, the domain of $f(x)$ is $=\mathrm{R}-\{4\}$
Let

$$
f(x)=y=\frac{4-x}{x-4}
$$

$\Rightarrow \quad y x-4 y=4-x \Rightarrow y x+x=4 y+4$
$\Rightarrow \quad x(y+1)=4 y+4 \Rightarrow x=\frac{4(1+y)}{1+y}$
If x is real number, then $1+y \neq 0 \Rightarrow y \neq-1$
$\therefore \quad$ Range of $f(x)=\mathrm{R}-\{-1\}$
Hence, the correct option is (c).
Q32. The domain and range of real function f defined by $f(x)=\sqrt{x-1}$ is given by
(a) Domain $=(1, \infty)$, Range $=(0, \infty)$
(b) Domain $=[1, \infty)$, Range $=(0, \infty)$
(c) Domain $=[1, \infty)$, Range $=[0, \infty)$
(d) Domain $=[1, \infty)$, Range $=[0, \infty)$

Sol. Given that: $f(x)=\sqrt{x-1}$
$f(x)$ is defined if $x-1 \geq 0 \Rightarrow x \geq 1$
\therefore Domain of $f(x)=[0, \infty)$
Let $\quad f(x)=y=\sqrt{x-1} \Rightarrow y^{2}=x-1$
$\Rightarrow \quad x=y^{2}+1$
If x is real then $y \in \mathrm{R}$
\therefore Range of $f(x)=[0, \infty)$
Hence, the correct option is (d).
Q33. The domain of the function f given by $f(x)=\frac{x^{2}+2 x+1}{x^{2}-x-6}$ is
(a) $\mathrm{R}-\{3,-2\}$
(b) $\mathrm{R}-\{-3,2\}$ (c) $\mathrm{R}-\{3,-2\}$
(d) $\mathrm{R}-(3,-2)$

Sol. Given that: $f(x)=\frac{x^{2}+2 x+1}{x^{2}-x-6}$
$f(x)$ is defined if $\quad x^{2}-x-6 \neq 0$
$\Rightarrow \quad x^{2}-3 x+2 x-6 \neq 0$
$\Rightarrow \quad(x-3)(x+2) \neq 0 \quad \Rightarrow \quad x \neq-2, x \neq 3$
So, the domain of $f(x)=\mathrm{R}-\{-2,3\}$
Hence, the correct option is (a).
Q34. The domain and range of the function f given by $f(x)=2-|x-5|$ is
(a) Domain $=\mathrm{R}^{+}$, Range $=(-\infty, 1]$
(b) Domain $=$ R, Range $=(-\infty, 2$]
(c) Domain $=$ R, Range $=(-\infty, 2)$
(d) Domain $=\mathrm{R}^{+}$, Range $=(-\infty, 2]$

Sol. Given that: $f(x)=2-|x-5|$
Here, $f(x)$ is defined for $x \in \mathrm{R}$
\therefore Domain of $f(x)=\mathrm{R}$
Now, $|x-5| \geq 0 \quad \Rightarrow \quad-|x-5| \leq 0$

$$
\Rightarrow 2-|x-5| \leq 2
$$

$$
\Rightarrow \quad f(x) \leq 2
$$

$\therefore \quad$ Range of $f(x)=(-\infty$ 2]
Hence, the correct option is (b).
Q35. The domain for which the functions defined by $f(x)=3 x^{2}-1$ and $g(x)=3+x$ are equal is
(a) $\left\{-1, \frac{4}{3}\right\}$
(b) $\left\{-1, \frac{4}{3}\right\}$
(c) $\left\{-1, \frac{4}{3}\right\}$
(d) $\left\{-1, \frac{4}{3}\right\}$

Sol. Given that: $f(x)=3 x^{2}-1$ and $g(x)=3+x$

$$
\left.\begin{array}{rlrl}
& & f(x) & =g(x) \\
\Rightarrow & 3 x^{2}-1 & =3+x \\
\Rightarrow & 3 x^{2}-x-4 & =0 \quad \Rightarrow \quad 3 x^{2}-4 x+3 x-4=0 \\
\Rightarrow & x(3 x-4)+1(3 x-4) & =0 \Rightarrow \quad(x+1)(3 x-4)=0 \\
\Rightarrow & x+1 & =0 \text { or } 3 x-4=0 \\
\Rightarrow & x & =-1, \text { or } x=\frac{4}{3} \\
& \therefore & & \text { Domain }
\end{array}\right)=\left\{-1, \frac{4}{3}\right\}
$$

Hence, the correct option is (a).

Fill in the Blanks

Q36. Let f and g be two real functions given by

$$
\begin{aligned}
& f=\{(0,1),(2,0),(3,-4),(4,2),(5,1)\} \\
& g=\{(1,0),(2,2),(3,-1),(4,4),(5,3)\}
\end{aligned}
$$

then the domain of $f . g$ is given by
Sol. Given that: $\quad f(x)=\{(0,1),(2,0),(3,-4),(4,2),(5,1)\}$
and $\quad g(x)=\{(1,0),(2,2),(3,-1),(4,4),(5,3)\}$
$\therefore \quad$ Domain of $f=\{0,2,3,4,5\}$
and domain of $g=\{1,2,3,4,5\}$
So, domain of $f \cdot g=$ Domain of $f \cap$ Domain of g

$$
=\{2,3,4,5\}
$$

Hence, the filler is $\{2,3,4,5\}$.
Q37. Let
$f=\{(2,4),(5,6),(8,-1),(10,-3)\}$
and $\quad g=\{(2,5),(7,1),(8,4),(10,13),(11,5)\}$
be two real functions. Then match the following:
(a) $f-g$
(i) $\left\{\left(2, \frac{4}{5}\right),\left(8,-\frac{1}{4}\right),\left(10, \frac{-3}{13}\right)\right\}$
(b) $f+g$
(ii) $\{(2,20),(8,-4),(10,-39\}$
(c) $f . g$
(iii) $\{(2,-1),(8,-5),(10,-16)\}$
(d) $\frac{f}{g}$
(iv) $\{(2,9),(8,3),(10,10)\}$

Sol. Given that: $\quad f=\{(2,4),(5,6),(8,-1),(10,-3)\}$
and $\quad g=\{(2,5),(7,1),(8,4),(10,13),(11,5)\}$
$f-g, f+g, f \cdot g, \frac{f}{g}$ are defined in the domain
(domain of $f \cap$ domain of g)
$\Rightarrow\{2,5,8,10\} \cap\{2,7,8,10,11\}$
$\Rightarrow\{2,8,10\}$
(i)

$$
\begin{aligned}
& (f-g) 2=f(2)-g(2)=4-5=-1 \\
& (f-g) 8=f(8)-g(8)=-1-4=-5 \\
& (f-g) 10=f(10)-g(10)=-3-13=-16 \\
& \therefore \quad(f-g)=\{(2,-1),(8,-5),(10,-16)\} \\
& (f+g) 2=f(2)+g(2)=4+5=9 \\
& (f+g) 8=f(8)+g(8)=-1+4=3 \\
& (f+g) 10=f(10)+g(10)=-3+13=10 \\
& \therefore \quad(f+g)=\{(2,9),(8,3),(10,10)\} \\
& \text { (iii) } \quad(f \cdot g) 2=f(2) \cdot g(2)=4.5=20 \\
& (f \cdot g) 8=f(8) \cdot g(8)=(-1) \cdot(4)=-4 \\
& (f \cdot g) 10=f(10) \cdot g(10)=-3.13=-39 \\
& \therefore \quad(f . g)=\{(2,20),(8,-4),(10,-39)\}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\left(\frac{f}{g}\right)(2) & =\frac{f(2)}{g(2)}=\frac{4}{5} \\
\left(\frac{f}{g}\right)(8) & =\frac{f(8)}{g(8)}=\frac{-1}{4} \\
\left(\frac{f}{g}\right)(10) & =\frac{f(10)}{g(10)}=\frac{-3}{13} \\
\therefore \quad\left(\frac{f}{g}\right) & =\left\{\left(2, \frac{4}{5}\right),\left(8, \frac{-1}{4}\right),\left(10, \frac{-3}{13}\right)\right\}
\end{aligned}
$$

Hence, the correct option is
$(a) \leftrightarrow(i i i),(b) \leftrightarrow(i v),(c) \leftrightarrow(i i),(d) \leftrightarrow(i)$

State True or False for the Statements in Each of the Exercises 38 to 42.

Q38. The ordered pair $(5,2)$ belongs to the relation
$\mathrm{R}=\{(x, y): y=x-5, x, y \in Z\}$
Sol. Given that: $\mathrm{R}=\{(x, y): y=x-5, x, y \in Z\}$
For $(5,2), \quad y=x-5$
Put $x=5, \quad y=5-5=0 \neq 2$
So $(5,2)$ is not the ordered pair of R.
Hence, the statement is 'False'.
Q39. If $\mathrm{P}=\{1,2\}$, then

$$
\mathrm{P} \times \mathrm{P} \times \mathrm{P}=\{(1,1,1),(2,2,2),(1,2,2),(2,1,1)\}
$$

Sol. Given that $\mathrm{P}=\{1,2\}$

$$
\begin{aligned}
& \therefore \quad \mathrm{P} \times \mathrm{P}=\{1,2\} \times\{1,2\}=\{(1,1),(1,2),(2,1),(2,2)\} \\
& \mathrm{P} \times \mathrm{P} \times \mathrm{P}=\{(1,1),(1,2),(2,1),(2,2)\} \times\{1,2\} \\
&=\{(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1), \\
&(2,1,2),(2,2,1),(2,2,2)\}
\end{aligned}
$$

So, given statement is 'False'.
Q40. If $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\}$ then

$$
(A \times B) \cup(A \times C)=\{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5)
$$

$$
(2,6),(3,3),(3,4),(3,5),(3,6)\}
$$

Sol. Given that: $\mathrm{A}=\{1,2,3\}, B=\{3,4\}$ and $\mathrm{C}=\{4,5,6\}$

$$
A \times B=\{(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)\}
$$

$$
\begin{equation*}
\text { and } \quad A \times C=\{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4) \text {, } \tag{3,5}
\end{equation*}
$$

$(A \times B) \cup(A \times C)=\{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5)$, $(2,6),(3,3),(3,4),(3,5),(3,6)\}$
Hence, the given statement is 'True'.
Q41. If $(x-2, y+5)=\left(-2, \frac{1}{3}\right)$ are two equal ordered pairs, then $x=4, y=\frac{-14}{3}$.
Sol. Given that: $(x-2, y+5)=\left(-2, \frac{1}{3}\right)$
$\Rightarrow \quad x-2=-2 \Rightarrow x=0$
and

$$
y+5=\frac{1}{3} \Rightarrow y=\frac{1}{3}-5 \Rightarrow y=-\frac{14}{3}
$$

Hence, the given statement is 'False'.
Q42. If $\mathrm{A} \times \mathrm{B}=\{(a, x),(a, y),(b, x),(b, y)\}$ then $\mathrm{A}=\{a, b\}$ and $\mathrm{B}=\{x, y\}$.
Sol. Given that: $\mathrm{A}=\{a, b\}$ and $\mathrm{B}=\{x, y\}$
$\therefore \quad \mathrm{A} \times \mathrm{B}=\{(a, x),(a, y),(b, x),(b, y)\}$
Hence, the statement is 'True'.

