EXERCISE

SHORT ANSWER TYPE QUESTIONS

Q1. Let $A = \{-1, 2, 3\}$ and $B = \{1, 3\}$. Determine (*i*) $A \times B$ (*ii*) $B \times A$ (*iii*) $B \times B$ (*iv*) $A \times A$ **Sol.** Given that: $A = \{-1, 2, 3\}$ and $B = \{1, 3\}$ (i) $A \times B = \{(-1, 1), (-1, 3), (2, 1), (2, 3), (3, 1), (3, 3)\}$ (*ii*) $B \times A = \{(1, -1), (3, -1), (1, 2), (3, 2), (1, 3), (3, 3)\}$ (*iii*) $B \times B = \{1, 3\} \times \{1, 3\} = \{(1, 1), (1, 3), (3, 1), (3, 3)\}$ (*iv*) $A \times A = \{-1, 2, 3\} \times \{-1, 2, 3\}$ $= \{(-1, -1), (-1, 2), (-1, 3), (2, -1), (2, 2), (2, 3), (3, -1), (-1, 2), (-1, 3),$ (3, 2), (3, 3)**Q2.** If $P = \{x : x < 3, x \in N\}, Q = \{x : x \le 2, x \in W\}$. Find $(P \cup Q) \times (P \cap Q)$ where W is the set of whole numbers. **Sol.** Given that: $P = \{x : x < 3, x \in N\} \implies P = \{1, 2\}$ $\mathbf{Q} = \{x : x \le 2, x \in \mathbf{W}\} \quad \Rightarrow \quad \mathbf{Q} = \{0, 1, 2\}$ $(P \cup Q) = \{0, 1, 2\}$ and $(P \cap Q) = \{1, 2\}$ Now :. $(P \cup Q) \times (P \cap Q) = \{(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)\}$ **Q3.** If $A = \{x : x \in W, x < 2\}$, $B = \{x : x \in N, 1 < x < 5\}$, and $C = \{3, 5\}$, find (*i*) $A \times (B \cap C)$ (*ii*) $A \times (B \cup C)$ **Sol.** Given that: A = { $x : x \in W, x < 2$ } \Rightarrow A = {0, 1} $B = \{x : x \in N, 1 \le x \le 5\} \implies B = \{2, 3, 4\}$ $C = \{3, 5\}$ $A \times (B \cap C) = \{0, 1\} \times \{3\} = \{(0, 3), (1, 3)\}$ *(i)* (ii) $A \times (B \cup C) = \{0, 1\} \times \{2, 3, 4, 5\}$ $= \{(0,2), (0,3), (0,4), (0,5), (1,2), (1,3), (1,4), (1,5)\}$ **Q4.** In each of the following cases, find *a* and *b* (*ii*) $\left(\frac{a}{4}, a-2b\right) = (0, 6+b)$ (*i*) (2a + b, a - b) = (8, 3)**Sol.** (*i*) Given that: (2a + b, a - b) = (8, 3)Comparing the domains and ranges, we get 2a + b = 8...(*i*) a - b = 3...(*ii*) Solving (i) and (ii) we get $a = \frac{11}{3}$ and $b = \frac{2}{3}$

1

(*ii*) Given that: $\left(\frac{a}{4}, a - 2b\right) = (0, 6 + b)$ Comparing the domains and ranges, we get $\frac{a}{4} = 0 \implies a = 0, \ a - 2b = 6 + b$ $\Rightarrow \qquad a - 3b = 6 \Rightarrow 0 - 3b = 6$ b = -2.... So, a = 0, b = -2. **Q5.** Given A = {1, 2, 3, 4, 5}, S = { $(x, y) : x \in A, y \in A$ }. Find the ordered pairs which satisfy the condition given below: (*i*) x + y = 5 (*ii*) x + y < 5Sol. Given that: $A = \{1, 2, 3, 4, 5\}$ (*iii*) x + y > 8 $S = \{(x, y) : x \in A, y \in A\}$ and (*i*) x + y = 5, so, the ordered pairs satisfying the given conditions are (1, 4), (4, 1), (2, 3), (3, 2). (*ii*) x + y < 5, so, the ordered pairs satisfying the given conditions are (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1). (*iii*) x + y > 8, so the ordered pairs satisfying the given conditions are (4, 5), (5, 4), (5, 5). **Q6.** Given $R = \{(x, y) : x, y \in W, x^2 + y^2 = 25\}$, find the domain and range of R. R = {(x, y) : x, y \in W, $x^2 + y^2 = 25$ } **Sol.** Given that: So, the ordered pairs satisfying the given condition $x^2 + y^2 = 25$ $\{ :: x, y \in W \}$ are (0, 5), (3, 4), (5, 0), (4, 3) Hence, the domain = {0, 3, 4, 5} and the range = {0, 3, 4, 5}. **Q7.** If $R_1 = \{(x, y) \mid y = 2x + 7 \text{ where } x \in R \text{ and } -5 \le x \le 5\}$ is a relation. Then find the domain and range. **Sol.** Given that: $R_1 = \{(x, y) \mid y = 2x + 7 \text{ where } x \in R \text{ and } -5 \le x \le 5\}$ Here domain is $-5 \le x \le 5 \implies \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$ and y = 2x + 7. So, the values of *y* for the corresponding given values of *x* are $\{-3, -1, 1, 3, 5, 7, 9, 11, 13, 15, 17\}$ Hence, the domain of $R_1 = [-5, 5]$ and range of $R_1 = [-3, 17]$ **Q8.** If $R_2 = \{(x, y) \mid x \text{ and } y \text{ are integers and } x^2 + y^2 = 64\}$ is a relation, then find R_2 . **Sol.** Given that: $x^2 + y^2 = 64$, $x, y \in \mathbb{Z}$ Since the sum of the squares of two integers is 64 \therefore For x = 0, $y = \pm 8$ For $x = \pm 8$, y = 0Hence, $R_2 = \{(0, 8), (0, -8), (8, 0), (-8, 0)\}$

- **Q9.** If $R_3 = \{(x,|x|) | x \text{ is a real number} \}$ is a relation, then find domain and range of R_3 .
- $\mathbf{R}_3 = \{(x, |x|) | x \text{ is a real number} \}$ **Sol.** Given that: Clearly, domain of $R_3 = R$ $[\because |x| = R_{\perp}]$ and Range of $R_3 = (0, \infty)$
- Q10. Is the given relation a function? Give reason for your answer:
 - (*i*) $h = \{(4, 6), (3, 9), (-11, 6), (3, 11)\}$ (*ii*) $f = \{(x, x) \mid x \text{ is a real number}\}$
 - (*iii*) $g = \left\{ \left(n, \frac{1}{n} \right) \mid n \text{ is a positive integer} \right\}$

(*iv*)
$$s = \{(n, n^2) | n \text{ is a positive integer}\}$$

- (v) $t = \{(x, 3) \mid x \text{ is a real number}\}$
- **Sol.** Given that: (*i*) $h = \{(4, 6), (3, 9), (-11, 6), (3, 11)\}$ Since in the given relation 3 has two images 9 and 11. So, *h* is not a function.
 - (*ii*) $f = \{(x, x) | x \text{ is a real number}\}$. Here, we observe that for every element of domain has a unique image. So, *f* is a function.
- (*iii*) Given that: $g = \left\{ \left(n, \frac{1}{n}\right) \mid n \text{ is a positive integer} \right\}$.

Here, we observe that n is a positive integer so, for every element of domain, there is a unique $\frac{1}{n}$ image. Hence *g* is a function.

- (*iv*) Given that: $S = \{(n, n^2) | n \text{ is a positive integer}\}$ Here, we observe that the square of any integer is a unique number. So, for every element element in the domain there is unique image. Hence, S is a function.
- (v) Given that: $t = \{(x, 3) | x \text{ is a real number}\}$ Here, we observe that for every real element in the domain, there is a constant number 3. Hence *t* is a constant function.
- **Q11.** If *f* and *g* are real functions defined by $f(x) = x^2 + 7$ and g(x) = 3x + 5, find each of the following:

(i)
$$f(3) + g(-5)$$
 (ii) $f\left(\frac{1}{2}\right) \times g(14)$ (iii) $f(-2) + g(-1)$
(iv) $f(t) - f(-2)$ (v) $\frac{f(t) - f(5)}{t - 5}$, if $t \neq 5$
Sol. Given that: $f(x) = x^2 + 7$ and $g(x) = 3x + 5$
(i) $f(3) + g(-5) = [(3)^2 + 7] + [3(-5) + 5]$
 $= (9 + 7) + (-15 + 5) = 16 - 10 = 6$
Hence, $f(3) + g(-5) = 6$

Chapter 2 - Relations and Functions NCERT Exemplar - Class 11

(ii)
$$f\left(\frac{1}{2}\right) \times g(14) = \left[\left(\frac{1}{2}\right)^2 + 7\right] \times [3 \times 14 + 5]$$

 $= \left(\frac{1}{4} + 7\right) \times (42 + 5) = \frac{29}{4} \times 47 = \frac{1363}{4}$
 Hence, $f\left(\frac{1}{2}\right) \times g(14) = \frac{1363}{4}$
(iii) $f(-2) + g(-1) = [(-2)^2 + 7] + [3(-1) + 5]$
 $= (4 + 7) + (-3 + 5) = 11 + 2 = 13$
 Hence, $f(-2) + g(-1) = 13$
(iv) $f(t) - f(-2) = (t^2 + 7) - [(-2)^2 + 7] = t^2 + 7 - 11$
 $= t^2 - 4$
 Hence, $f(t) - f(-2) = t^2 - 4$.
(v) $\frac{f(t) - f(5)}{t - 5}, t \neq 5 = \frac{(t^2 + 7) - ((5)^2 + 7)}{t - 5}$
 $= \frac{t^2 + 7 - 32}{t - 5} = \frac{t^2 - 25}{t - 5} = t + 5$
 Hence, $\frac{f(t) - f(5)}{t - 5}, t \neq 5 = t + 5$.
Q12. Let f and g be real functions defined by $f(x) = 2x + 1$ and $g(x) = 4x - 7$
(i) For what real numbers, $f(x) = g(x)$?
(ii) For what real numbers, $f(x) = g(x)$?
Sol. Given that: $f(x) = 2x + 1$ and $g(x) = 4x - 7$
(i) For $f(x) = g(x)$, we get
 $2x + 1 = 4x - 7 \implies 2x - 4x = -7 - 1$
 $\Rightarrow -2x = -8$
 $\Rightarrow x = 4$. Hence, the required real number is 4.
(ii) For $f(x) < g(x)$, we get
 $2x + 1 < 4x - 7$
 $\Rightarrow 2x - 4x < -1 - 7 \implies -2x < -8 \implies 2x > 8$
 $\therefore x > 4$
 Hence, the required real number is $x > 4$.
Q13. If f and g are two real valued functions defined as $f(x) = 2x + 1$, $g(x) = x^2 + 1$ then find
 (ii) f $(x - x)^{(ii)} f(x) = x^{(iii)} f(x) = x^{(i$

(i) f+g (ii) f-g (iii) f.g (iv) $\frac{f}{g}$

- **Sol.** Given that: f(x) = 2x + 1 and $g(x) = x^2 + 1$ (*i*) $f + g = f(x) + g(x) \Rightarrow 2x + 1 + x^2 + 1 \Rightarrow x^2 + 2x + 2$ (*ii*) $f g = f(x) g(x) \Rightarrow (2x + 1) (x^2 + 1) = 2x + 1 x^2 1 \Rightarrow 2x x^2$

NCERT Exemplar - Class 11

- (*iii*) $f g = f(x) g(x) \implies (2x+1)(x^2+1) \implies 2x^3 + x^2 + 2x + 1$ (*iv*) $\frac{f}{g} = \frac{f(x)}{g(x)} = \frac{2x+1}{x^2+1}$
- **Q14.** Express the following functions as set of ordered pairs and determine their range

$$f: X \to R, f(x) = x^3 + 1$$
, where $X = \{-1, 0, 3, 9, 7\}$.

Sol. Given that: $f: X \to R$, $f(x) = x^3 + 1$, where $X = \{-1, 0, 3, 9, 7\}$ Here $X = \{-1, 0, 3, 9, 7\}$ For x = -1, $f(-1) = (-1)^3 + 1 = 0$ For x = 0, $f(0) = (0)^3 + 1 = 1$ For x = 3, $f(3) = (3)^3 + 1 = 28$ For x = 9, $f(9) = (9)^3 + 1 = 730$ For x = 7, $f(7) = (7)^3 + 1 = 344$ ∴ The ordered pairs are (-1, 0), (0, 1), (3, 28), (7, 344), (9, 730)and the range = $\{0, 1, 28, 344, 730\}$.

- **Q15.** Find the values of *x* for which the functions $f(x) = 3x^2 1$ and g(x) = 3 + x are equal?
- $f(x) = 3x^2 1$ and g(x) = 3 + x**Sol.** Given that: Since f(x) = g(x)(given) $3x^2 - 1 = 3 + x \implies 3x^2 - x - 4 = 0$ \Rightarrow $3x^2 - 4x + 3x - 4 = 0 \implies x(3x - 4) + 1(3x - 4) = 0$ \Rightarrow $(3x-4)(x+1) = 0 \implies 3x-4 = 0 \text{ or } x+1 = 0$ \Rightarrow 3x = 4 or x = -1 \Rightarrow $x = \frac{4}{3}$ Hence, the value of *x* are – 1 and $\frac{4}{3}$.

LONG ANSWER TYPE QUESTIONS

- **Q16.** Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ a function? Justify: If this is described by the relation $g(x) = \alpha x + \beta$, then what values should be assigned to α and β ?
- **Sol.** Given that: $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ Since every element of the domain in this relations has unique image, so g is a function. Now $g(x) = \alpha x + \beta$ For (1, 1) $g(1) = \alpha(1) + \beta = 1 \Rightarrow \alpha + \beta = 1$...(i) For (2, 3) $g(2) = \alpha(2) + \beta = 3 \Rightarrow 2\alpha + \beta = 3$...(ii) Solving eqn. (i) and (ii) we have $\alpha = 2$ and $\beta = -1$

[Note: We can take any other two ordered pairs] Hence, the value of α = 2 and β = – 1.

Q17. Find the domain of each of the following functions given by:

(i)
$$f(x) = \frac{1}{\sqrt{1 - \cos x}}$$
 (ii) $f(x) = \frac{1}{\sqrt{x + |x|}}$ (iii) $f(x) = x |x|$
(iv) $f(x) = \frac{x^3 - x + 3}{x^2 - 1}$ (v) $f(x) = \frac{3x}{28 - x}$
Sol. (i) Given that: $f(x) = \frac{1}{\sqrt{1 - \cos x}}$
We know that $-1 \le \cos x \le 1$
 $\Rightarrow 1 \ge -\cos x \ge -1$
 $\Rightarrow 1 + 1 \ge 1 - \cos x \ge -1 + 1$
 $\Rightarrow 2 \ge 1 - \cos x \ge -1 + 1$
 $\Rightarrow 0 \le 1 - \cos x \le 2$
For real value of domain
 $1 - \cos x \ne 0 \Rightarrow \cos x \ne 1$
 $\Rightarrow x \ne 2n\pi \quad \forall n \in \mathbb{Z}$
Hence, the domain of $f = \mathbb{R} - \{2n\pi, n \in \mathbb{Z}\}$
(ii) Given that: $f(x) = \frac{1}{\sqrt{x + |x|}}$
 $\therefore x + |x| = x + x = 2x$ if $x \ge 0$
and $x + |x| = x - x = 0$ if $x < 0$
So far $x < 0$, f is not defined.
Hence, the domain $f = \mathbb{R}^+$.
(iii) Given that: $f(x) = x |x|$
It is clear that $f(x)$ is defined for all $x \in \mathbb{R}$.
Hence, the domain of $f = \mathbb{R}$.
(iv) Given that: $f(x) = \frac{x^3 - x + 3}{x^2 - 1}$
Here, $f(x)$ is only defined if $x^2 - 1 \ne 0$
 $(x - 1)(x + 1) \ne 0$
 $\therefore x \ne 1, x \ne -1$
Hence, the domain of $f = \mathbb{R} - \{-1, 1\}$
(v) Given that: $f(x) = \frac{3x}{28 - x}$
Here, $f(x)$ is only defined if $28 - x \ne 0 \Rightarrow x \ne 28$
Hence, the domain $\mathbb{R} - \{28\}$.
Q18. Find the range of the following functions given by
(i) $f(x) = \frac{3}{2 - x^2}$ (ii) $f(x) = 1 - |x - 2|$
(iii) $f(x) = |x - 3|$ (iv) $f(x) = 1 + 3 \cos 2x$

Sol.	(<i>i</i>) Given that: $f(x) = \frac{3}{2 - x^2}$
	Let $y = f(x)$ \therefore $y = \frac{3}{2 - x^2}$
	$\Rightarrow \qquad y(2-x^2) = 3 \Rightarrow 2y - yx^2 = 3$ $\Rightarrow \qquad yx^2 = 2y - 3$
	$\Rightarrow yx^2 = 2y - 3$
	$\Rightarrow \qquad x^2 = \frac{2y-3}{y} \Rightarrow x = \sqrt{\frac{2y-3}{y}}$
	Here, <i>x</i> is real if $2y - 3 \ge 0$ and $y \ge 0$
	$\Rightarrow \qquad y \ge \frac{3}{2}$
	Hence, the range of $f = \left[\frac{3}{2}, \infty\right)$.
	Hence, the range of $f = \lfloor \frac{2}{2}, \cdots \rfloor$.
(ii)	Given that: $f(x) = 1 - x - 2 $
	We know that $ x-2 = -(x-2)$ if $x < 2$
	and $ x-2 = (x-2)$ if $x \ge 2$
	$\therefore \qquad - x-2 \le 0 \implies 1- x-2 \le 1$
	Hence, the range of $f = (-\infty, 1]$.
(iii)	Given that: $f(x) = x-3 $
	We know that $ x-3 \ge 0 \implies f(x) \ge 0$
<i>(</i> *)	Hence, the range of $f = [0, \infty)$
(10)	Given that: $f(x) = 1 + 3 \cos 2x$
	We know that $-1 \le \cos 2x \le 1$
	$\Rightarrow \qquad -3 \le 3 \cos 2x \le 3 \Rightarrow -3 + 1 \le 1 + 3 \cos 2x \le 3 + 1$
	$\Rightarrow -2 \le 1+3\cos 2x \le 4 \Rightarrow -2 \le f(x) \le 4$
010	Hence, the range of $f = [-2, 4]$.
	Redefine the function $f(x) = x-2 + 2+x , -3 \le x \le 3$. Given that: $f(x) = x-2 + 2+x , -3 \le x \le 3$
501.	Given that: $f(x) = x-2 + 2+x , -3 \le x \le 3$ Since $ x-2 = -(x-2), x \le 2$
	and $ x-2 = (x-2), x \ge 2$
	$ x - 2 = (x - 2), x \ge 2$ $ 2 + x = -(2 + x), x < -2$
	Now $f(x) = x-2 + 2+x , -3 \le x \le 3.$
	$=\begin{cases} -(x-2) - (2+x), -3 \le x < -2\\ -(x-2) + (2+x), -2 \le x < 2\\ (x-2) + (2+x), 2 \le x \le 3 \end{cases}$
	$(x-2) + (2+x)', 2 \le x \le 3$
	$(-2x, -3 \le x < -2)$
	$\therefore \qquad f(x) = \begin{cases} -2x, -3 \le x < -2 \\ 4, -2 \le x < 2 \\ 2x, 2 \le x \le 3 \end{cases}$
	$\begin{bmatrix} 2x, & 2 \le x \le 3 \end{bmatrix}$

Q20. If
$$f(x) = \frac{x-1}{x+1}$$
, then show that
(i) $f\left(\frac{1}{x}\right) = -f(x)$ (ii) $f\left(\frac{-1}{x}\right) = \frac{-1}{f(x)}$
Sol. Given that: $f(x) = \frac{x-1}{x+1}$
(i) $f\left(\frac{1}{x}\right) = \frac{\frac{1}{x}-1}{\frac{1}{x}+1} = \frac{1-x}{1+x} = \frac{-(x-1)}{x+1} = -f(x)$
Hence, $f\left(\frac{1}{x}\right) = -f(x)$
(ii) $f\left(\frac{-1}{x}\right) = \frac{-\frac{1}{x}-1}{-\frac{1}{x}+1} = \frac{-\left(\frac{1}{x}+1\right)}{-\left(\frac{1}{x}-1\right)} = \frac{1+x}{1-x} = \frac{1}{\frac{1-x}{1+x}}$
 $= \frac{1}{-\left(\frac{x-1}{x+1}\right)} = \frac{-1}{f(x)}$
Hence, $f\left(-\frac{1}{x}\right) = \frac{-1}{f(x)}$.

Q21. Let $f(x) = \sqrt{x}$ and g(x) = x be two functions defined in the domain $\mathbb{R}^+ \cup \{0\}$.

(i)
$$(f+g)(x)$$
 (ii) $(f-g)(x)$ (iii) $(f.g)(x)$ (iv) $(\frac{f}{g})(x)$

Sol. Given that: $f(x) = \sqrt{x}$ and g(x) = x be two functions defined in the domain $\mathbb{R}^+ \cup \{0\}$

(i)
$$(f+g)(x) = f(x) + g(x) = \sqrt{x} + x$$

(*ii*)
$$(f-g)(x) = f(x) - g(x) = \sqrt{x} - x$$

(*iii*)
$$(fg)(x) = f(x) \cdot g(x) = \sqrt{x} \cdot x = x^{3/2}$$

(*iv*)
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}.$$

Q22. Find the domain and range of the function $f(x) = \frac{1}{\sqrt{x-5}}$.

Sol. Given that:
$$f(x) = \frac{1}{\sqrt{x-5}}$$

Here, it is clear that f(x) is real when $x - 5 > 0 \implies x > 5$ Hence, the domain = $(5, \infty)$ Now to find the range put $f(x) = y = \frac{1}{\sqrt{x-5}}$ $\sqrt{x-5} = \frac{1}{y} \implies x-5 = \frac{1}{y^2}$ \Rightarrow $x = \frac{1}{v^2} + 5$ For $x \in (5, \infty)$, $y \in \mathbb{R}^+$ Hence, the range of $f = R^+$. **Q23.** If $f(x) = y = \frac{ax - b}{cx - a}$, then prove that f(y) = x. **Sol.** Given that: $f(x) = y = \frac{ax - b}{cx - c}$ $f(y) = \frac{ay - b}{cy - a} = \frac{a\left\lfloor\frac{ax - b}{cx - a}\right\rfloor - b}{c\left\lfloor\frac{ax - b}{cx - a}\right\rfloor - a}$ $f(y) = \frac{a^{2}x - ab - bcx + ab}{cax - bc - cax + a^{2}} = \frac{a^{2}x - bcx}{a^{2} - bc}$ \Rightarrow $f(y) = \frac{x(a^2 - bc)}{a^2 - bc} = x$.

Hence, f(y) = x.

OBJECTIVE TYPE QUESTIONS

Choose the correct answer out of the given four options in each of the Exercises from 24 to 35 (M.C.Q.)

Q24. Let n(A) = m and n(B) = n, then the total number of non-empty relations that can be defined from A to B is (a) m^n (b) $n^m - 1$ (c) mn - 1 (d) $2^{mn} - 1$ Sol. Given that: n(A) = m and n(B) = n \therefore $n(A \times B) = n(A) \cdot n(B) = mn$ So, the total number of relations from A to B = $2^{mn} - 1$. Hence, the correct option is (d). Q25. If $[x]^2 - 5[x] + 6 = 0$, where [.] denotes the greatest integer function, then $(a)x \in [3, 4]$ (b) $x \in (2, 3]$ (c) $x \in [2, 3]$ (d) $x \in [2, 4)$

Chapter 2 - Relations and Functions NCERT Exemplar - Class 11
Sol. We have
$$[x]^2 - 5[x] + 6 = 0$$

 $\Rightarrow [x]([x]-3) - 2([x]-3) = 0$
 $\Rightarrow ([x]-3)([x]-2) = 0 \Rightarrow [x] = 2, 3$
So, $x \in [2, 3]$.
Hence, the correct option is (c).
Q26. Range of $f(x) = \frac{1}{1 - 2\cos x}$ is
(a) $\left[\frac{1}{3}, 1\right]$ (b) $\left[-1, \frac{1}{3}\right]$
(c) $(-\infty, -1] \cup \left[\frac{1}{3}, \infty\right)$ (d) $\left[-\frac{1}{3}, 1\right]$
Sol. Given that: $f(x) = \frac{1}{1 - 2\cos x}$
We know that $-1 \le \cos x \le 1$
 $\Rightarrow 1 \ge \cos x \ge -1 \Rightarrow -1 \le -\cos x \le 1$
 $\Rightarrow -2 \le -2\cos x \le 2 \Rightarrow -2 + 1 \le 1 - 2\cos x \le 2 + 1$
 $\Rightarrow -1 \le 1 - 2\cos x \le 3 \Rightarrow -1 \le \frac{1}{1 - 2\cos x} \le \frac{1}{3}$
 $\Rightarrow -1 \le f(x) \le \frac{1}{3}$
So the range of $f(x) = \left[-1, \frac{1}{3}\right]$
Hence, the correct option is (b).
Q27. Let $f(x) = \sqrt{1 + x^2}$, then
(a) $f(xy) = f(x), f(y)$ (b) $f(xy) \ge f(x), f(y)$
(c) $f(xy) \le f(x), f(y)$ (d) None of these
Sol. Given that: $f(x) = \sqrt{1 + x^2}$, $\sqrt{1 + x^2} \Rightarrow f(xy) = \sqrt{1 + x^2y^2}$
and $f(x) . f(y) = \sqrt{1 + x^2} . \sqrt{1 + y^2} = \sqrt{1 + x^2 + y^2 + x^2y^2}$
 $\therefore \sqrt{1 + x^2y^2} \le \sqrt{1 + x^2 + y^2 + x^2y^2}$
 $\Rightarrow f(xy) \le f(x), f(y)$
Hence, the correct option is (c).
Q28. Domain of $\sqrt{a^2 - x^2}$ (a > 0) is
(a) $(-a, a)$ (b) $[-a, a]$ (c) $[0, a]$ (d) $(-a, 0]$
Sol. Let $f(x) = \sqrt{a^2 - x^2}$
 $f(x)$ is defined if $a^2 - x^2 \ge 0$

NCERT Exemplar - Class 11

 $x^2 - a^2 \le 0 \implies x^2 \le a^2$ \Rightarrow $x \leq \pm a \implies -a \leq x \leq a$ \Rightarrow \therefore Domain of f(x) = [-a, a]Hence, the correct option is (*b*). **Q29.** If f(x) = ax + b, where a and b are integers, f(-1) = -5 and f(3) = 3, then *a* and *b* are equal to (a) a = -3, b = -1(b) a = 2, b = -3(*d*) a = 2, b = 3(c) a = 0, b = 2**Sol.** Given that: f(x) = ax + bf(-1) = a(-1) + b \Rightarrow -5 = -a + b \Rightarrow a - b = 5 \Rightarrow ...(i) f(3) = 3a + b3 = 3a + b \Rightarrow 3a + b = 3 \Rightarrow ...(*ii*) On solving eqn. (i) and (ii), we get a = 2, b = -3Hence, the correct option is (*b*). **Q30.** The domain of the function *f* defined by $f(x) = \sqrt{4 - x} + \frac{1}{\sqrt{x^2 - 1}}$ is equal to $\begin{array}{ll} (a) & (-\infty, -1) \cup (1, 4] & (b) & (-\infty, -1] \cup (1, 4] \\ (c) & (-\infty, -1) \cup [1, 4] & (d) & (-\infty, -1) \cup [1, 4) \end{array}$ **Sol.** Given that: $f(x) = \sqrt{4-x} + \frac{1}{\sqrt{x^2-1}}$ f(x) is defined if $4 - x \ge 0 \qquad \text{or} \qquad x^2 - 1 \ge 0$ $-x \ge -4$ or (x-1)(x+1) > 0 \Rightarrow \Rightarrow $x \leq 4$ or x < -1 and x > 1 \therefore Domain of f(x) is $(-\infty, -1) \cup (1, 4]$ Hence, the correct option is (*a*). **Q31.** The domain and range of the real function *f* defined by $f(x) = \frac{4-x}{x-4}$ is given by (*a*) Domain = **R**, Range = $\{-1, 1\}$ (*b*) Domain = $\mathbf{R} - \{1\}$, Range = \mathbf{R} (c) Domain = $\mathbf{R} - \{4\}$, Range = $\mathbf{R} - \{-1\}$ (d) Domain = $\mathbf{R} - \{-4\}$, Range = $\{-1, 1\}$ **Sol.** Given that: $f(x) = \frac{4-x}{x-4}$

We know that f(x) is defined if $x - 4 \neq 0 \Rightarrow x \neq 4$ So, the domain of f(x) is = R – {4} $f(x) = y = \frac{4-x}{x-4}$ Let $yx - 4y = 4 - x \implies yx + x = 4y + 4$ \Rightarrow $x(y+1) = 4y+4 \quad \Rightarrow \quad x = \frac{4(1+y)}{1+y}$ \Rightarrow If *x* is real number, then $1 + y \neq 0 \Rightarrow y \neq -1$ Range of $f(x) = R - \{-1\}$... Hence, the correct option is (*c*). **Q32.** The domain and range of real function *f* defined by $f(x) = \sqrt{x-1}$ is given by (a) Domain = $(1, \infty)$, Range = $(0, \infty)$ (b) Domain = $[1, \infty)$, Range = $(0, \infty)$ (c) Domain = $[1, \infty)$, Range = $[0, \infty)$ (d) Domain = $[1, \infty)$, Range = $[0, \infty)$ **Sol.** Given that: $f(x) = \sqrt{x-1}$ f(x) is defined if $x - 1 \ge 0 \Rightarrow x \ge 1$ \therefore Domain of $f(x) = [0, \infty)$ $f(x) = y = \sqrt{x-1} \implies y^2 = x-1$ Let $x = y^2 + 1$ \Rightarrow If *x* is real then $y \in \mathbb{R}$ \therefore Range of $f(x) = [0, \infty)$ Hence, the correct option is (*d*). **Q33.** The domain of the function *f* given by $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 4}$ is (a) $R - \{3, -2\}$ (b) $R - \{-3, 2\}$ (c) $R - \{3, -2\}$ (d) R - (3, -2)**Sol.** Given that: $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 6}$ f(x) is defined if $x^2 - x - 6 \neq 0$ $x^2 - 3x + 2x - 6 \neq 0$ \Rightarrow $(x-3)(x+2) \neq 0 \implies x \neq -2, x \neq 3$ \Rightarrow So, the domain of $f(x) = \mathbb{R} - \{-2, 3\}$ Hence, the correct option is (*a*). **Q34.** The domain and range of the function *f* given by f(x) = 2 - |x - 5| is (a) Domain = \mathbb{R}^+ , Range = $(-\infty, 1]$ (b) Domain = R, Range = $(-\infty, 2]$ (c) Domain = R, Range = $(-\infty, 2)$ (d) Domain = \mathbb{R}^+ , Range = $(-\infty, 2]$

- **Sol.** Given that: f(x) = 2 |x 5|Here, f(x) is defined for $x \in \mathbb{R}$ \therefore Domain of $f(x) = \mathbb{R}$ Now, $|x - 5| \ge 0 \implies -|x - 5| \le 0$ $\implies 2 - |x - 5| \le 2$ $\implies f(x) \le 2$ \therefore Range of $f(x) = (-\infty, 2]$ Hence, the correct option is (b).
- **Q35.** The domain for which the functions defined by $f(x) = 3x^2 1$ and g(x) = 3 + x are equal is

(a)
$$\left\{-1, \frac{4}{3}\right\}$$
 (b) $\left\{-1, \frac{4}{3}\right\}$ (c) $\left\{-1, \frac{4}{3}\right\}$ (d) $\left\{-1, \frac{4}{3}\right\}$

Sol. Given that: $f(x) = 3x^2 - 1$ and g(x) = 3 + x

$$\Rightarrow \qquad 3x^2 - 1 = 3 + x$$

$$\Rightarrow \qquad 3x^2 - x - 4 = 0 \Rightarrow 3x^2 - 4x + 3x - 4 = 0$$

$$\Rightarrow \qquad x(3x - 4) + 1(3x - 4) = 0 \Rightarrow (x + 1)(3x - 4) = 0$$

$$\Rightarrow \qquad x + 1 = 0 \text{ or } 3x - 4 = 0$$

$$\Rightarrow \qquad x = -1, \text{ or } x = \frac{4}{3}$$

$$\therefore \qquad \text{Domain} = \left\{-1, \frac{4}{3}\right\}$$

Hence, the correct option is (*a*).

Fill in the Blanks

Q36. Let *f* and *g* be two real functions given by $f = \{(0, 1), (2, 0), (3, -4), (4, 2), (5, 1)\}$ $g = \{(1, 0), (2, 2), (3, -1), (4, 4), (5, 3)\}$ then the domain of *f.g* is given by $f(x) = \{(0, 1), (2, 0), (3, -4), (4, 2), (5, 1)\}$ **Sol.** Given that: $g(x) = \{(1, 0), (2, 2), (3, -1), (4, 4), (5, 3)\}$ and *.*.. Domain of $f = \{0, 2, 3, 4, 5\}$ and domain of $g = \{1, 2, 3, 4, 5\}$ So, domain of $f g = Domain of f \cap Domain of g$ $= \{2, 3, 4, 5\}$ Hence, the filler is $\{2, 3, 4, 5\}$. $f = \{(2, 4), (5, 6), (8, -1), (10, -3)\}$ Q37. Let $g = \{(2, 5), (7, 1), (8, 4), (10, 13), (11, 5)\}$ and

be two real functions. Then match the following:

(a)
$$f-g$$
 (i) $\left\{ \left(2, \frac{4}{5}\right), \left(8, -\frac{1}{4}\right), \left(10, -\frac{3}{13}\right) \right\}$
(b) $f+g$ (ii) $\{(2, 20), (8, -4), (10, -39)\}$
(c) $f \cdot g$ (iii) $\{(2, -1), (8, -5), (10, -16)\}$
(d) $\frac{f}{g}$ (iv) $\{(2, 9), (8, 3), (10, 10)\}$
Sol. Given that: $f = \{(2, 4), (5, 6), (8, -1), (10, -3)\}$
and $g = \{(2, 5), (7, 1), (8, 4), (10, 13), (11, 5)\}$
 $f-g, f+g, f \cdot g, \frac{f}{g}$ are defined in the domain
(domain of $f \cap$ domain of g)
 $\Rightarrow \{2, 5, 8, 10\} \cap \{2, 7, 8, 10, 11\}$
 $\Rightarrow \{2, 8, 10\}$
(i) $(f-g)2 = f(2) - g(2) = 4 - 5 = -1$
 $(f-g)8 = f(8) - g(8) = -1 - 4 = -5$
 $(f-g)10 = f(10) - g(10) = -3 - 13 = -16$
 \therefore $(f-g) = \{(2, -1), (8, -5), (10, -16)\}$
(ii) $(f+g)2 = f(2) + g(2) = 4 + 5 = 9$
 $(f+g)8 = f(8) + g(8) = -1 + 4 = 3$
 $(f+g)10 = f(10) + g(10) = -3 + 13 = 10$
 \therefore $(f+g) = \{(2, 9), (8, 3), (10, 10)\}$
(iii) $(f, g)2 = f(2) \cdot g(2) = 4 \cdot 5 = 20$
 $(f \cdot g)8 = f(8) \cdot g(8) = (-1) \cdot (4) = -4$
 $(f \cdot g)10 = f(10) \cdot g(10) = -3 \cdot 13 = -39$
 \therefore $(f \cdot g) = \{(2, 20), (8, -4), (10, -39)\}$
(iv) $\left(\frac{f}{g}\right)(2) = \frac{f(2)}{g(2)} = \frac{4}{5}$
 $\left(\frac{f}{g}\right)(3) = \frac{f(8)}{g(8)} = \frac{-1}{4}$
 $\left(\frac{f}{g}\right)(10) = \frac{f(10)}{g(10)} = \frac{-3}{13}$
 \therefore $\left(\frac{f}{g}\right) = \left\{\left(2, \frac{4}{5}\right), \left(8, \frac{-1}{4}\right), \left(10, \frac{-3}{13}\right)\right\}$
Hence, the correct option is

 $(a) \leftrightarrow (iii), (b) \leftrightarrow (iv), (c) \leftrightarrow (ii), (d) \leftrightarrow (i)$

State True or False for the Statements in Each of the Exercises 38 to 42.

Q38. The ordered pair (5, 2) belongs to the relation $R = \{(x, y) : y = x - 5, x, y \in Z\}$ **Sol.** Given that: $R = \{(x, y) : y = x - 5, x, y \in Z\}$ For (5, 2), y = x - 5 $y = 5 - 5 = 0 \neq 2$ Put x = 5, So (5, 2) is not the ordered pair of R. Hence, the statement is 'False'. **Q39.** If $P = \{1, 2\}$, then $P \times P \times P = \{(1, 1, 1), (2, 2, 2), (1, 2, 2), (2, 1, 1)\}$ **Sol.** Given that $P = \{1, 2\}$ $P \times P = \{1, 2\} \times \{1, 2\} = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$ $P \times P \times P = \{(1, 1), (1, 2), (2, 1), (2, 2)\} \times \{1, 2\}$ $= \{(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1),$ (2, 1, 2), (2, 2, 1), (2, 2, 2)So, given statement is 'False'. **Q40.** If A = $\{1, 2, 3\}$, B = $\{3, 4\}$ and C = $\{4, 5, 6\}$ then $(A \times B) \cup (A \times C) = \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 5), (2, 6),$ (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)**Sol.** Given that: $A = \{1, 2, 3\}, B = \{3, 4\} and C = \{4, 5, 6\}$ $A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}$ $A \times C = \{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 6), (3,$ and (3, 5), (3, 6) $(A \times B) \cup (A \times C) = \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 5), (2, 6),$ (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)Hence, the given statement is 'True'. **Q41.** If $(x - 2, y + 5) = \left(-2, \frac{1}{3}\right)$ are two equal ordered pairs, then $x = 4, y = \frac{-14}{2}.$ **Sol.** Given that: $(x - 2, y + 5) = \left(-2, \frac{1}{3}\right)$ $x - 2 = -2 \implies x = 0$ \Rightarrow $y+5 = \frac{1}{3} \implies y = \frac{1}{3}-5 \implies y = -\frac{14}{3}$ and Hence, the given statement is 'False'. **Q42.** If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$ then $A = \{a, b\}$ and $B = \{x, y\}$. **Sol.** Given that: $A = \{a, b\}$ and $B = \{x, y\}$

 $\therefore \qquad A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$ Hence, the statement is 'True'.