Manas Sahni

20 Sep. 2017

GURU HARKRISHAN PUBLIC SCHOOL

(Running under the aegis of GHPS Society)

HALF YEARLY EXAMINATION(2017-18) SUBJECT: MATHEMATICS, CLASS: IX

Time Allowed: 3 Hours Instructions:

Maximum Marks: 80

- All questions are compulsory.
- Section A carry 6 questions of 1mark each
- Section B carry 6 questions of 2 marks each
- Section C carry 10 questions of 3 marks each
- Section D carry 8 questions of 4 marks each

Section A (1 mark each)

- Write an irrational number between 2.4 and 2.5.
- . What is coefficient of x^2 in $4x^2 + 2x + 1$.
- In which quadrant will the point lie if ordinate is 4 and abscissa is -6?
- 4 Write the complement of 730.
- 5 What is the degree of polynomial $4x^3 + 0x^5 + 2x + 7$.
- What is the abscissa of (3,-4),

Section B (2 marks each)

7 Locate √3on number line.

8. In given figure if AC = BD, then prove that AB = CD.

In the given figure if ∠PQR = ∠PRQ, then prove that ∠PQS = ∠PRT.

10 Pind the decimal expansion of

- 11. Find the value of polynomial $6x^3 2x + 7$ at x=0
- 12. In the given figure, X and Y are the mid points of BA and BC respective AX=CY.

Show that AB=BC.

Section C (3 marks each)

- 13. Rationalize the following-
- a) $\frac{1}{\sqrt{3}+5}$

$$b) \frac{\sqrt{4} - \sqrt{7}}{\sqrt{4} + \sqrt{7}}$$

14. Check whether 7+3x is a factor of 3x3 + 7x are not.

15. In which quadrant or on which axis do each of the following points lie.

(3,-6) . (5,8) . (0,2) . (-1,3) . (-5,0) . (-7,-2)

16. In fig given below PQ RS, ∠MXQ = 135° and ∠MYR = 40° find ∠XMY.

- 17. Find the zero of the polynomial for the following
 - p(x) = ax

b)
$$p(x) = 3x-2$$

18. Plot the points (x, y) given in the following table on the plane, choosing suitable units of distance on the axes.

X	-5	2	-7	3	0	0
v	0	3	-2	-1	4	-5

- 19. The sides of triangular plot are in ratio 3:5:7 and its perimeter is 300m. Find its area.
- 20. In the given figure line segment AB is parallel to another line segment CD. O is the mid point of AD. Show that:
 - a) △AOB ≅ △DOC
 - b) O is also mid point of BC

- 21. Find the area of triangle with two sides of measure 18cm and 10cm and the perimeter of 42 cm.
- 22. In an isosceles triangle ABC with AB=AC, D and E are points on BC, such that BE=CD. Show that AD=AE

Section D (4 marks each)

23 Factorize
$$x^3 - 23x^2 + 142x - 120$$

24. Find the value of 'k', if the polynomial $p(x) = 4x^3 - 12x^2 + 14x - k$ when divided by 2x - 1 leaves remainder $\frac{3}{2}$.

OF

Divide the polynomial $3x^4 - 4x^3 - 3x - 1$ by x - 1.

25. In the figure given below the sides AB and AC of \triangle ABC produced to points E and D respectively. If the bisector of BO and CO of \angle CBE and \angle BCD respectively meet at point O, then prove that \angle BOC = $90^{\circ} - \frac{1}{2} \angle$ BAC.

26. Simplify $(\sqrt{5} + \sqrt{2})^2$

- 27. Find the following:
 - a) 325
- b) $\frac{112}{114}$
- 28. Construct the following angles
 - a) 120°
- b) 2250
- 29. In the figure given below it is given that ∠A =∠C and AB = CB. Prove that
 - a) △ ABD ≡ △ CBE
 - b) AE = CD
 - $c)\triangle AOE \cong \triangle COD$

30. Construct a triangle XYZ in which $\angle Y = 30^{\circ} \angle Z = 90^{\circ}$ and XY + YZ + ZX = 11cm.

OR

Construct a triangle ABC in which BC=7cm, ∠B = 75° and AB+AC=13cm.