

MANAVA BHARATI

INDIA INTERNATIONAL SCHOOL

MID-TERM EXAMINATION (2016-17)

Class XII - Mathematics

Time allowed: 3 hours

Maximum Marks: 100

General Instructions

Q.NO 1 to 4 carry 1 mark each 10 min

Q.NO 5 to 12 carry 2 marks each 20min

Q.NO 13 to 23 carry 4 marks each 1 km Q.NO 24 to 29 carry 6 marks each 1 We

If the matrix $\begin{bmatrix} 0 & 6-5x \\ x^2 & x+3 \end{bmatrix}$ is symmetric, find the values of x

If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ then A + A' = I, where I is the identity matrix of order 2. Find the value of α .

If $y = \sqrt{Sinx^2}$. Find $\frac{dy}{dx}$

Find the principle value of $\cot^{-1}(-\frac{1}{\sqrt{3}})$

Find the value $tan(Sin^{-1} \frac{3}{5} + Cot^{-1} \frac{3}{2})$

Find $\frac{dy}{dx}$, if $\sin^2 y + \cos xy = \pi$

Differentiate with respect to x, $\sin^{-1}\left(\frac{2^{x+1}}{1+4^x}\right)$

Evaluate $\int \frac{dx}{\sqrt{5-4x-2x^2}}$

Evaluate $\int \frac{\cos x}{(1-\sin x)(2-\sin x)} dx$

Prove that the tangents to the curve $y = x^2 - 5x + 6$ at the points (2,0) and (3,0) are at right angle.

Verify Lagrange's Mean Value theorem for the function $f(x) = x^3 - 5x^2 - 3x$ in [1, 3]

If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating its volume.

Mid-Term Assmt/SEPT/2016/XII/Mathematics /P a g e 1 | 3

Using properties of determinants, prove that

$$\begin{vmatrix} a^{2} + 1 & ab & ac \\ ab & b^{2} + 1 & bc \\ ac & bc & c^{2} + 1 \end{vmatrix} = 1 + a^{2} + b^{2} + c^{2}$$

Prove that $Cot^{-1}\left\{\frac{\sqrt{1+sinx} + \sqrt{1-sinx}}{\sqrt{1+sinx} - \sqrt{1-sinx}}\right\} = \frac{x}{2}$, $x \in (0, \frac{\pi}{4})$

simplify $\tan^{-1}\left\{\frac{a\cos x - b\sin x}{b\cos x + a\sin x}\right\}$, if $\frac{a}{b}\tan x > -1$

Express the matrix $A = \begin{bmatrix} 4 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$, as the sum of the symmetric and skew - symmetric matrix.

Find the value of a and b if the function defined by
$$f(x) = \begin{cases} 5, & \text{if } x \leq 2 \\ 6x + b, & \text{if } 2 < x < 10 \end{cases}$$
 is a continuous function
$$f(x) = \begin{cases} ax + b, & \text{if } x \leq 10 \\ 21, & \text{if } x \geq 10 \end{cases}$$

If
$$y = \log(x + \sqrt{x^2 + 1})$$
, prove that $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 0$

ifferentiate tan $\left(\frac{\sqrt{1-x^2}}{x}\right)$ w.r.t. Cos $\left(2x\sqrt{1-x^2}\right)$ where $x \neq 0$

Two schools A and B decided to award the prizes to their students for three values honesty (x), punctuality (y) and obedience (z). School A decided to award a total of Rs 11000 for the three values to 5, 4 and 3 students respectively while school B decided to award a total of Rs.10700 for three values to 4, 5 and 3 students respectively. If all the three prizes together amount to Rs 2700, then (ii) represent the above situation by a matrix equation and form linear equations using matrix multiplication, (ii) is it possible to solve the system of equations so obtain using matrices ? (iii) which value you prefer to be rewarded most and

Evaluate the integral

Evaluate $\int (\sin^{-1} x)^2 dx$

Show that $y = log(1 + x) - \frac{2x}{2+x}$, x > -1, is an increasing function of x throughout its domain

Mid-Term Assmt/SEPT/2016/XII/Mathematics /P a g e 2 | 3

Find the equation of the normal to the curve $x^2 = 4y$ which passes through the point (1,2)

Find the point on the curve $9y^2 = x^3$, where the normal to the curve makes equal intercepts with the axes.

 $\int \frac{x^2+1}{x^2-5x+6} dx$ Evaluate the integral

Evaluate the integral $\int \frac{dx}{1-tanx}$

Show that $\sin^{-1} \frac{3}{5} - \sin^{-1} \frac{8}{17} = \cos^{-1} \frac{84}{85}$

Using properties of determinants prove that $(y+z)^2 xy zx$

$$\begin{vmatrix} (y+z)^2 & xy & zx \\ xy & (x+z)^2 & yz \\ xz & yz & (x+y)^2 \end{vmatrix} = 2xyz(x+y+z)^3$$

Evaluate the definite integral as limit of sums, $\int_{1}^{4} (x^{2} - x) dx$

We waluate the integral, $\int \frac{(3\sin\phi - 2)\cos\phi}{5 - \cos^2\phi - 4\sin\phi} d\phi$

$$\int \frac{(3\sin\phi - 2)\cos\phi}{5 - \cos^2\phi - 4\sin\phi} \, d\phi$$

Prove that the function f given by f(x) = |x-1|, $x \in R$ is not differential at x = 1.

(b) Show that $f(x) = \begin{cases} \frac{x-|x|}{2}, & where \ x \neq 0 \\ 2, & where \ x = 0 \end{cases}$ is discontinuous at x = 0

(a) For a positive constant a find $\frac{dy}{dx}$, where $y = a^{t+1/t}$, $x = (t+1/t)^a$ obeck

Show that the function given by $f(x) = \frac{\log x}{x}$ has maximum at x = e

Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere

Find the maximum area of an isosceles triangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ its vertex at one end of the major axis.

3 4 12th + 52+5xth

Mid-Term Assmt/SEPT/2016/XII/Mathematics /Page 3 | 3