Exercise 11.1

Question 1:

A square and a rectangular field with measurements as given in the figure have the same perimeter. Which field has a larger area?

-(a)

(b)

Answer 1:
Given: The side of a square $=60 \mathrm{~m}$
And the length of rectangular field $=80 \mathrm{~m}$
According to question,
Perimeter of rectangular field $=$ Perimeter of square field
$\Rightarrow \quad 2(l+b)=4 \times$ side
$\Rightarrow \quad 2(80+b)=4 \times 60$
$\Rightarrow \quad 160+2 b=240$
$\Rightarrow \quad 2 b=240-160$
$\Rightarrow \quad 2 b=80$
$\Rightarrow \quad b=40 \mathrm{~m}$
Now Area of Square field $=(\text { Side })^{2}=(60)^{2}=3600 \mathrm{~m}^{2}$
And \quad Area of Rectangular field $=$ length \times breadth $=80 \times 40=3200 \mathrm{~m}^{2}$
Hence, area of square field is larger.

Question 2:

Mrs. Kaushik has a square plot with the measurement as shown in the figure. She wants to construct a house in the middle of the plot. A garden is developed around the house. Find the total cost of developing a garden around the house at the rate of ₹ $55 \mathrm{per} \mathrm{m}^{2}$.

Answer 2:

Side of a square plot $=25 \mathrm{~m}$
\therefore Area of square plot $=(\text { Side })^{2}=(25)^{2}=625 \mathrm{~m}^{2}$
Length of the house $=20 \mathrm{~m}$ and
Breadth of the house $=15 \mathrm{~m}$

\therefore Area of the house $=$ length x breadth $=20 \times 15=300 \mathrm{~m}^{2}$
Area of garden $=$ Area of square plot - Area of house

$$
=625-300=325 \mathrm{~m}^{2}
$$

\because Cost of developing the garden per sq. $\mathrm{m}=$ ₹ 55
\therefore Cost of developing the garden 325 sq. $\mathrm{m}=₹ 55 \times 325$
= ₹ 17,875

Hence total cost of developing a garden around is ₹ 17,875 .

Question 3:

The shape of a garden is rectangular in the middle and semi-circular at the ends as shown in the diagram. Find the area and the perimeter of this garden [Length of rectangle is 20 - [3.5 + 3.5 meters]

Emini Answer 3:

Given: Total length $=20 \mathrm{~m}$
Diameter of semi circle $=7 \mathrm{~m}$
\therefore Radius of semi circle $=\frac{7}{2}=3.5 \mathrm{~m}$
Length of rectangular field $=20-(3.5+3.5)=20-7=13 \mathrm{~m}$
Breadth of the rectangular field $=7 \mathrm{~m}$
$\therefore \quad$ Area of rectangular field $=l \times b=13 \times 7=91 \mathrm{~m}^{2}$

Area of two semi circles $=2 \times \frac{1}{2} \pi r^{2}=2 \times \frac{1}{2} \times \frac{22}{7} \times 3.5 \times 3.5=38.5 \mathrm{~m}^{2}$

Area of garden $=91+38.5=129.5 \mathrm{~m}^{2}$

Now Perimeter of two semi circles $=2 \times \pi r=2 \times \frac{22}{7} \times 3.5=22 \mathrm{~m}$
And \quad Perimeter of garden $=22+13+13=48 \mathrm{~m}$

Question 4:

A flooring tile has the shape of a parallelogram whose base is 24 cm and the corresponding height is 10 cm . How many such tiles are required to cover a floor of area $1080 \mathrm{~m}^{2}$? [If required you can split the tiles in whatever way you want to fill up the corners]

tuai Answer 4:

Given: Base of flooring tile $=24 \mathrm{~cm}=0.24 \mathrm{~m}$

$$
\text { Corresponding height of a flooring tile }=10 \mathrm{~cm}=0.10 \mathrm{~m}
$$

Now Area of flooring tile $=$ Base \times Altitude $=0.24 \times 0.10=0.024 \mathrm{~m}^{2}$
$\therefore \quad$ Number of tiles required to cover the floor $=\frac{\text { Area of floor }}{\text { Area of one tile }}$
$=\frac{1080}{0.024}$
$=45000$ tiles

Hence 45000 tiles are required to cover the floor.

Question 5:

An ant is moving around a few food pieces of different shapes scattered on the floor. For which food-piece would the ant have to take a longer round? Remember, circumference of a circle can be obtained by using the expression $c=2 \pi r$, where r is the radius of the circle.
(a)

(b)

(c)

Emini Answer 5:

(a) Radius $=\frac{\text { Diameter }}{2}=\frac{2.8}{2}=1.4 \mathrm{~cm}$

Circumference of semi circle $=\pi r=\frac{22}{7} \times 1.4=4.4 \mathrm{~cm}$

Total distance covered by the ant $=$ Circumference of semi circle + Diameter

$$
=4.4+2.8=7.2 \mathrm{~cm}
$$

(b) Diameter of semi circle $=2.8 \mathrm{~cm}$
\therefore Radius $=\frac{\text { Diameter }}{2}=\frac{2.8}{2}=1.4 \mathrm{~cm}$
Circumference of semi circle $=\pi r=\frac{22}{7} \times 1.4=4.4 \mathrm{~cm}$
Total distance covered by the ant $=1.5+2.8+1.5+4.4=10.2 \mathrm{~cm}$
(c) Diameter of semi circle $=2.8 \mathrm{~cm}$
\therefore Radius $=\frac{\text { Diameter }}{2}=\frac{2.8}{2}=1.4 \mathrm{~cm}$
Circumference of semi circle $=\pi r=\frac{22}{7} \times 1.4=4.4 \mathrm{~cm}$
Total distance covered by the ant $=2+2+4.4=8.4 \mathrm{~cm}$
Hence for figure (b) food piece, the ant would take a longer
 round.

Exercise 11.2

Question 1:

The shape of the top surface of a table is a trapezium. Find its area if its parallel sides are 1 m and 1.2 m and perpendicular distance between them is 0.8 m .

E Answer 1:
Here one parallel side of the trapezium $(a)=1 \mathrm{~m}$
And second side $(b)=1.2 \mathrm{~m}$ and height $(h)=0.8 \mathrm{~m}$

$$
\begin{aligned}
\therefore \quad \text { Area of top surface of the table }= & \frac{1}{2}(a+b) \times h \\
& =\frac{1}{2} \times(1+1.2) \times 0.8 \\
& =\frac{1}{2} \times 2.2 \times 0.8=0.88 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the surface area of the table is $0.88 \mathrm{~m}^{2}$.

Question 2:

The area of a trapezium is $34 \mathrm{~cm}^{2}$ and the length of one of the parallel sides is 10 cm and its height is 4 cm . Find the length of the other parallel side.

$\operatorname{tani}^{\text {mai }}$ Answer 2:

Let the length of the other parallel side be b.
Length of one parallel side $(a)=10 \mathrm{am}$ and height $(h)=4 \mathrm{~cm}$
Area of trapezium $=\frac{1}{2}(a+b) \times h$
$\Rightarrow \quad 34=\frac{1}{2}(10+b) \times 4$
$\Rightarrow \quad 34=(10+b) \times 2$

$$
\begin{array}{ll}
\Rightarrow & 34=20+2 b \\
\Rightarrow & 34-20=2 b \\
\Rightarrow & 14=2 b \\
\Rightarrow & 7=b \\
\Rightarrow & b=7
\end{array}
$$

Hence, the another required parallel side is 7 cm .

Question 3:

Length of the fence of a trapezium shaped field $A B C D$ is 120 m . If $B C=48 \mathrm{~m}, C D=17 \mathrm{~m}$ and $A D=40 \mathrm{~m}$, find the area of this field. Side $A B$ is perpendicular to the parallel sides $A D$ and $B C$.

Eman Answer 3:

Given: $\quad \mathrm{BC}=48 \mathrm{~m}, \mathrm{CD}=17 \mathrm{~m}, \mathrm{AD}=40 \mathrm{~m}$ and perimeter $=120 \mathrm{~m}$
$\because \quad$ Perimeter of trapezium $A B C D=A B+B C+C D+D A$
$\Rightarrow \quad 120=\mathrm{AB}+48+17+40$
$\Rightarrow \quad 120=\mathrm{AB}=105$
$\Rightarrow \quad \mathrm{AB}=120-105=15 \mathrm{~m}$

Now \quad Area of the field $=\frac{1}{2} \times(B C+A D) \times A B$

$$
\begin{aligned}
& =\frac{1}{2} \times(48+40) \times 15=\frac{1}{2} \times 88 \times 15 \\
& =660 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, area of the field ABCD is $660 \mathrm{~m}^{2}$.

Question 4:

The diagonal of a quadrilateral shaped field is 24 m and the perpendiculars dropped on it from the remaining opposite vertices are 8 m and 13 m . Find the area of the field.

Emini Answer 4:
Here $h_{1}=13 \mathrm{~m}, h_{2}=8 \mathrm{~m}$ and $\mathrm{AC}=24 \mathrm{~m}$
Area of quadrilateral $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABC}+$ Area of $\triangle \mathrm{ADC}$

Hence, required area of the field is $252 \mathrm{~m}^{2}$.

Question 5:

The diagonals of a rhombus are 7.5 cm and 12 cm . Find its area.

Emini Answer 5:

Given: $\quad d_{1}=7.5 \mathrm{~cm}$ and $d_{2}=12 \mathrm{~cm}$
We know that,

$$
\text { Area of rhombus }=\frac{1}{2} \times d_{1} d_{2}=\frac{1}{2} \times 7.5 \times 12=45 \mathrm{~cm}^{2}
$$

Hence, area of rhombus is $45 \mathrm{~cm}^{2}$.

Question 6:

Find the area of a rhombus whose side is 6 cm and whose altitude is 4 cm . If one of the diagonals is 8 cm long, find the length of the other diagonal.
Eanswer 6:
Since rhombus is also a kind of parallelogram.
$\therefore \quad$ Area of rhombus $=$ Base \times Altitude

$$
=6 \times 4=24 \mathrm{~cm}^{2}
$$

Also Area of rhombus $=\frac{1}{2} d_{1} d_{2}$
$\Rightarrow \quad 24=\frac{1}{2} \times 8 \times d_{2}$
$\Rightarrow \quad 24=4 d_{2}$
$\Rightarrow \quad d_{2}=\frac{24}{4}=6 \mathrm{~cm}$
Hence, the length of the other diagonal is 6 cm .

Question 7:

The floor of a building consists of 3000 tiles which are rhombus shaped and each of its diagonals are 45 cm and 30 cm in length. Find the total cost of polishing the floor, if the cost per m^{2} is ₹ 4 .
EAnswer 7:
Here, $d_{1}=45 \mathrm{~cm}$ and $d_{2}=30 \mathrm{~cm}$

$$
\because \quad \text { Area of one tile }=\frac{1}{2} d_{1} d_{2}=\frac{1}{2} \times 45 \times 30=675 \mathrm{~cm}^{2}
$$

$$
\begin{aligned}
& \therefore \quad \text { Area of } 3000 \text { tiles }=675 \times 3000=2025000 \mathrm{~cm}^{2} \\
& =\frac{2025000}{10000}=202.50 \mathrm{~m} 2 \quad\left[\because 1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}\right] \\
& \because \quad \text { Cost of polishing the floor per sq. meter }=\text { ₹ } 4 \\
& \therefore \quad \text { Cost of polishing the floor per } 202.50 \text { sq. } \text { meter }=4 \times 202.50=₹ 810
\end{aligned}
$$

Hence, the total cost of polishing the floor is ₹ 810 .

Question 8:

Mohan wants to buy a trapezium shaped field. Its side along the river is parallel to and twice the side along the road. If the area of this field is $10500 \mathrm{~m}^{2}$ and the perpendicular distance between the two parallel sides is 100 m , find the length of the side along the river.

Road

Emin Answer 8:

Given: Perpendicular distance $(h)=100 \mathrm{~m}$
Area of the trapezium shaped field $=10500 \mathrm{~m}^{2}$
Let side along the road be $x \mathrm{~m}$ and side along the river $=2 x \mathrm{~m}$
$\therefore \quad$ Area of the trapezium field $=\frac{1}{2}(a+b) \times h$
$\Rightarrow \quad 10500=\frac{1}{2}(x+2 x) \times 100$
$\Rightarrow \quad 10500=3 x \times 50$
$\Rightarrow \quad 3 x=\frac{10500}{50}$
$\Rightarrow \quad x=\frac{10500}{50 \times 3}$
$\Rightarrow \quad x=70 \mathrm{~m}$
Hence, the side along the river $=2 x=2 \times 70=140 \mathrm{~m}$.

Question 9:

Top surface of a raised platform is in the shape of a regular octagon as shown in the figure. Find the area of the octagonal surface.

$\operatorname{tanin}^{\text {and }}$ Answer 9:

Given: Octagon having eight equal sides, each 5 m .
Construction: Divided the octagon in 3 figures, two trapeziums whose parallel and perpendicular sides are 11 m and 4 m respectively and third figure is rectangle having length and breadth 11 m and 5 m respectively.

Now Area of two trapeziums $=2 \times \frac{1}{2}(a+b) \times h$

$$
=2 \times \frac{1}{2}(11+5) \times 4=4 \times 16=64 \mathrm{~m}^{2}
$$

And \quad Area of rectangle $=$ length x breadth

$$
=11 \times 5=55 \mathrm{~m}^{2}
$$

$$
\therefore \quad \text { Total area of octagon }=64+55=119 \mathrm{~m}^{2}
$$

Question 10:

There is a pentagonal shaped park as shown in the figure.
For finding its area Jyoti and Kavita divided it in two different ways.

Find the area of this park using both ways. Can you suggest some other way of finding its area?

Ennswer 10:

First way: By Jyoti's diagram,
Area of pentagon $=$ Area of trapezium ABCP + Area of trapezium AEDP

$$
\begin{aligned}
& =\frac{1}{2}(\mathrm{AP}+\mathrm{BC}) \times \mathrm{CP}+\frac{1}{2}(\mathrm{ED}+\mathrm{AP}) \times \mathrm{DP} \\
& =\frac{1}{2}(30+15) \times \mathrm{CP}+\frac{1}{2}(15+30) \times \mathrm{DP} \\
& =\frac{1}{2}(30+15)(\mathrm{CP}+\mathrm{DP}) \\
& =\frac{1}{2} \times 45 \times \mathrm{CD} \\
& =\frac{1}{2} \times 45 \times 15=337.5 \mathrm{~m}^{2}
\end{aligned}
$$

Second way: By Kavita's diagram
Here, a perpendicular AM drawn to BE.

$$
\mathrm{AM}=30-15=15 \mathrm{~m}
$$

Area of pentagon $=$ Area of $\triangle \mathrm{ABE}+$ Area of square BCDE

$$
\begin{aligned}
& =\frac{1}{2} \times 15 \times 15+15 \times 15 \\
& =112.5+225.0 \\
& =337.5 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, total area of pentagon shaped park $=337.5 \mathrm{~m}^{2}$.

Question 11:

Diagram of the adjacent picture frame has outer dimensions $=24 \mathrm{~cm} \times 28 \mathrm{~cm}$ and inner dimensions $16 \mathrm{~cm} \times 20 \mathrm{~cm}$. Find the area of each section of the frame, if the width of each section is same.

Emi Answer 11:
Here two of given figures (I) and (II) are similar in dimensions.
And also figures (III) and (IV) are similar in dimensions.
$\therefore \quad$ Area of figure (I) = Area of trapezium $=\frac{1}{2}(a+b) \times h$

$$
\begin{aligned}
& =\frac{1}{2}(28+20) \times 4 \\
& =\frac{1}{2} \times 48 \times 4=96 \mathrm{~cm}^{2}
\end{aligned}
$$

Also Area of figure (II) $=96 \mathrm{~cm}^{2}$
Now Area of figure (III) = Area of trapezium $=\frac{1}{2}(a+b) \times h$

$$
\begin{aligned}
& =\frac{1}{2}(24+16) \times 4 \\
& =\frac{1}{2} \times 40 \times 4=80 \mathrm{~cm}^{2}
\end{aligned}
$$

Also Area of figure (IV) $=80 \mathrm{~cm}^{2}$

Exercise 11.3

Question 1:

There are two cuboidal boxes as shown in the adjoining figure. Which box requires the lesser amount of material to make?

(a)

(b)

Enai Answer 1:

(a) Given: Length of cuboidal box $(l)=60 \mathrm{~cm}$

Breadth of cuboidal box $(b)=40 \mathrm{~cm}$
Height of cuboidal box $(h)=50 \mathrm{~cm}$
$\therefore \quad$ Total surface area of cuboidal box $=2(l b+b h+h l)$

$$
\begin{aligned}
& =2(60 \times 40+40 \times 50+50 \times 60) \\
& =2(2400+2000+3000) \\
& =2 \times 7400=14800 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Given: Length of cuboidal box $(l)=50 \mathrm{~cm}$

Breadth of cuboidal box $(b)=50 \mathrm{~cm}$
Height of cuboidal box $(h)=50 \mathrm{~cm}$
$\therefore \quad$ Total surface area of cuboidal box $=2(l b+b h+h l)$

$$
\begin{aligned}
& =2(50 \times 50+50 \times 50+50 \times 50) \\
& =2(2500+2500+2500) \\
& =2 \times 7500=15000 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the cuboidal box (a) requires the lesser amount of material to make, since surface area of box (a) is less than that of box (b).

Question 2:

A suitcase with measures $80 \mathrm{~cm} \times 48 \mathrm{~cm} \times 24 \mathrm{~cm}$ is to be covered with a tarpaulin cloth. How many meters of tarpaulin of width 96 cm is required to cover 100 such suitcases?

Answer 2:
Given: Length of suitcase box $(l)=80 \mathrm{~cm}$,
Breadth of suitcase box $(b)=48 \mathrm{~cm}$
And Height of cuboidal box $(h)=24 \mathrm{~cm}$
$\therefore \quad$ Total surface area of suitcase box $=2(l b+b h+h l)$

$$
\begin{aligned}
& =2(80 \times 48+48 \times 24+24 \times 80) \\
& =2(3840+1152+1920) \\
& =2 \times 6912=13824 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of Tarpaulin cloth = Surface area of suitcase

$$
\begin{array}{ll}
\Rightarrow & l \times b=13824 \\
\Rightarrow & l \times 96=13824 \\
\Rightarrow & l=\frac{13824}{96}=144 \mathrm{~cm}
\end{array}
$$

Required tarpaulin for 100 suitcases $=144 \times 100=14400 \mathrm{~cm}=144 \mathrm{~m}$ Hence, the tarpaulin cloth required to cover 100 suitcases is 144 m .

Question 3:

Find the side of a cube whose surface area id $600 \mathrm{~cm}^{2}$.

tein Answer 3:

Here Surface area of cube $=600 \mathrm{~cm}^{2}$

$$
\begin{array}{ll}
\Rightarrow & 6 l^{2}=600 \\
\Rightarrow & l^{2}=100 \\
\Rightarrow & l=10 \mathrm{~cm}
\end{array}
$$

Hence the side of cube is 10 cm

Question 4:

Rukshar painted the outside of the cabinet of measure $1 \mathrm{~m} \times 2 \mathrm{~m} \times 1.5 \mathrm{~m}$. How much surface area did she cover if she painted all except the bottom of the cabinet?

Enisinswer 4:
Here,
Length of cabinet $(l)=2 \mathrm{~m}$,
Breadth of cabinet $(b)=1 \mathrm{~m}$
And Height of cabinet $(h)=1.5 \mathrm{~m}$
$\therefore \quad$ Surface area of cabinet $=l b+2(b h+h l)$

$$
\begin{aligned}
& =2 \times 1+2(1 \times 1.5+1.5 \times 2) \\
& =2+2(1.5+3.0) \\
& =2+9.0 \\
& =11 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the required surface area of cabinet is $11 \mathrm{~m}^{2}$.

Question 5:

Daniel is paining the walls and ceiling of a cuboidal hall with length, breadth and height of $15 \mathrm{~m}, 10 \mathrm{~m}$ and 7 m respectively. From each can of paint $100 \mathrm{~m}^{2}$ of area is painted. How many cans of paint will she need to paint the room?

Eanswer 5:

Here,
Length of wall $(l)=15 \mathrm{~m}$,
Breadth of wall $(b)=10 \mathrm{~m}$
And Height of wall $(h)=7 \mathrm{~m}$

$\therefore \quad$ Total Surface area of classroom $=l b+2(b h+h l)$

$$
\begin{aligned}
& =15 \times 10+2(10 \times 7+7 \times 15) \\
& =150+2(70+105) \\
& =150+350 \\
& =500 \mathrm{~m}^{2}
\end{aligned}
$$

Now Required number of cans $=\frac{\text { Area of hall }}{\text { Area of one can }}=\frac{500}{100}=5$ cans
Hence, 5 cans are required to paint the room.

Question 6:

Describe how the two figures below are alike and how they are different. Which box has larger lateral surface area?

teai Answer 6:

Given: Diameter of cylinder $=7 \mathrm{~cm}$
$\therefore \quad$ Radius of cylinder $(r)=\frac{7}{2} \mathrm{~cm}$
And Height of cylinder $(h)=7 \mathrm{~cm}$
Lateral surface area of cylinder $=2 \pi r h=2 \times \frac{22}{7} \times \frac{7}{2} \times 7$

$$
=154 \mathrm{~cm}^{2}
$$

Now lateral surface area of cube $=4 l^{2}=4 \times(7)^{2}=4 \times 49=196 \mathrm{~cm}^{2}$
Hence, the cube has larger lateral surface area.

Question 7:

A closed cylindrical tank of radius 7 m and height 3 m is made from a sheet of metal. How much sheet of metal is required?
$\epsilon_{\text {tai }}$ Answer 7:
Given: Radius of cylindrical tank $(r)=7 \mathrm{~m}$
Height of cylindrical tank $(h)=3 \mathrm{~m}$
Total surface area of cylindrical tank $=2 \pi r(h+r)$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 7(3+7) \\
& =44 \times 10=440 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, $440 \mathrm{~m}^{2}$ metal sheet is required.

Question 8:

The lateral surface area of a hollow cylinder is $4224 \mathrm{~cm}^{2}$. It is cut along its height and formed a rectangular sheet of width 33 cm . Find the perimeter of rectangular sheet?

tain Answer 8:

Given: Lateral surface area of hollow cylinder $=4224 \mathrm{~cm}^{2}$
And Height of hollow cylinder $=33 \mathrm{~cm}$
Curved surface area of hollow cylinder $=2 \pi r h$
$\Rightarrow \quad 4224=2 \times \frac{22}{7} \times r \times 33$
$\Rightarrow \quad r=\frac{4224 \times 7}{2 \times 22 \times 33}=\frac{64 \times 7}{22} \mathrm{~cm}$
Now Length of rectangular sheet $=2 \pi r$
$\Rightarrow \quad l=2 \times \frac{22}{7} \times \frac{64 \times 7}{22}=128 \mathrm{~cm}$
Perimeter of rectangular sheet $=2(l+b)$

$$
=2(128+33)=2 \times 161=322 \mathrm{~cm}
$$

Hence, the perimeter of rectangular sheet is 322 cm .

Question 9:

A road roller takes 750 complete revolutions to move once over to level a road. Find the area of the road if the diameter of a road roller is 84 cm and length 1 m .

$\operatorname{Emax}^{\text {man }}$ Answer 9:

Given: \quad Diameter of road roller $=84 \mathrm{~cm}$
$\therefore \quad$ Radius of road roller $(r)=\frac{d}{2}=\frac{84}{2}=42 \mathrm{~cm}$
Length of road roller $(h)=1 \mathrm{~m}=100 \mathrm{~cm}$
Curved surface area of road roller $=2 \pi r h=2 \frac{22}{7} \times 42 \times 100=26400 \mathrm{~cm}^{2}$
\therefore Area covered by road roller in 750 revolutions $=26400 \times 750$

$$
\begin{aligned}
& =1,98,00,000 \mathrm{~cm}^{2} \\
& =1980 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\left[\because 1 \mathrm{~m}^{2}=10,000 \mathrm{~cm}^{2}\right]
$$

Hence, the area of the road is $1980 \mathrm{~m}^{2}$.

Question 10:

A company packages its milk powder in cylindrical container whose base has a diameter of 14 cm and height 20 cm . Company places a label around the surface of the container (as shown in figure). If the label is placed 2 cm from top and bottom, what is the area of the label?

E Answer 10:

Given: Diameter of cylindrical container $=14 \mathrm{~cm}$
$\therefore \quad$ Radius of cylindrical container $(r)=\frac{d}{2}=\frac{14}{2}=7 \mathrm{~cm}$
Height of cylindrical container $=20 \mathrm{~cm}$
Height of the label $(h)=20-2-2=16 \mathrm{~cm}$
Curved surface area of label $=2 \pi r h=2 \frac{22}{7} \times 7 \times 16=704 \mathrm{~cm}^{2}$
Hence, the area of the label of $704 \mathrm{~cm}^{2}$.

Exercise 11.4

Question 1:

Given a cylindrical tank, in which situation will you find surface are and in which situation volume.
(a) To find how much it can hold.
(b) Number of cement bags required to plaster it.
(c) To find the number of smaller tanks that can be filled with water from it.

${ }^{6}$ Answer 1:

We find area when a region covered by a boundary, such as
 outer and inner surface area of a cylinder, a cone, a sphere and surface of wall or floor.
When the amount of space occupied by an object such as water, milk, coffee, tea, etc., then we have to find out volume of the object.
(a) Volume
(b) Surface are
(c) Volume

Question 2:

Diameter of cylinder A is 7 cm and the height is 14 cm . Diameter of cylinder B is 14 cm and height is 7 cm . Without doing any calculations can you suggest whose volume is greater? Verify it by finding the volume of both the cylinders. Check whether the cylinder with greater volume also has greater surface area.

A

B

$\operatorname{tumax}^{\text {and }}$ Answer 2:

Yes, we can say that volume of cylinder B is greater, since radius of cylinder B is greater than that of cylinder A (and square of radius gives more value than previous).
Diameter of cylinder $\mathrm{A}=7 \mathrm{~cm}$

$\Rightarrow \quad$ Radius of cylinder $\mathrm{A}=\frac{7}{2} \mathrm{~cm}$
And Height of cylinder A $=14 \mathrm{~cm}$
$\therefore \quad$ Volume of cylinder $\mathrm{A}=\pi r^{2} h=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 14$

$$
=539 \mathrm{~cm}^{3}
$$

Now Diameter of cylinder B = 14 cm
$\Rightarrow \quad$ Radius of cylinder $\mathrm{B}=\frac{14}{2}=7 \mathrm{~cm}$
And Height of cylinder B $=7 \mathrm{~cm}$
$\therefore \quad$ Volume of cylinder $\mathrm{A}=\pi r^{2} h=\frac{22}{7} \times 7 \times 7 \times 7$

$$
=1078 \mathrm{~cm}^{3}
$$

Total surface area of cylinder $\mathrm{A}=\pi r(2 h+r) \quad[\because$ It is open from top $]$

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{7}{2}\left(2 \times 14+\frac{7}{2}\right)=11 \times\left(28+\frac{7}{2}\right) \\
& =11 \times \frac{63}{2}=346.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Total surface area of cylinder $\mathrm{B}=\pi r(2 h+r) \quad[\because$ It is open from top $]$

$$
\begin{aligned}
& =\frac{22}{7} \times 7(2 \times 7+7) \\
& =22 \times(14+7)=22 \times 21=462 \mathrm{~cm}^{2}
\end{aligned}
$$

Yes, cylinder with greater volume also has greater surface area.

Question 3:

Find the height of a cuboid whose base area is $180 \mathrm{~cm}^{2}$ and volume is $900 \mathrm{~cm}^{3}$?
EAnswer 3:
Given: Base area of cuboid $=180 \mathrm{~cm}^{2}$ and Volume of cuboid $=900 \mathrm{~cm}^{3}$
We know that,
Volume of cuboid $=l \times b \times h$

$$
\begin{array}{lll}
\Rightarrow & 900=180 \times h & {[\because \text { Base area }=l \times b=180(\text { given })]} \\
\Rightarrow & h=\frac{900}{180}=5 \mathrm{~m} &
\end{array}
$$

Hence, the height of cuboid is 5 m .

Question 4:

A cuboid is of dimensions $60 \mathrm{~cm} \times 54 \mathrm{~cm} \times 30 \mathrm{~cm}$. How many small cubes with side 6 cm can be placed in the given cuboid?

$\boldsymbol{E}_{\text {mai }}$ Answer 4:

Given: Length of cuboid $(l)=60 \mathrm{~cm}$,
Breadth of cuboid $(b)=54 \mathrm{~cm}$ and
Height of cuboid $(h)=30 \mathrm{~cm}$
We know that, Volume of cuboid $=l \times b \times h=60 \times 54 \times 30 \mathrm{~cm}^{3}$
And \quad Volume of cube $=(\text { Side })^{3}=6 \times 6 \times 6 \mathrm{~cm}^{3}$
$\therefore \quad$ Number of small cubes $=\frac{\text { Volume of cuboid }}{\text { Volume of cube }}=\frac{60 \times 54 \times 30}{6 \times 6 \times 6}=450$
Hence, the required cubes are 450.

Question 5:

Find the height of the cylinder whose volume if 1.54 m 3 and diameter of the base is 140 cm.

Emin Answer 5:

Given: Volume of cylinder $=1.54 \mathrm{~m}^{3}$ and Diameter of cylinder $=140 \mathrm{~cm}$

$$
\therefore \quad \text { Radius }(r)=\frac{d}{2}=\frac{140}{2}=70 \mathrm{~cm}
$$

$$
\begin{array}{ll}
\text { Volume of cylinder }=\pi r^{2} h \\
\Rightarrow & 1.54=\frac{22}{7} \times 0.7 \times 0.7 \times h \\
\Rightarrow & h=\frac{1.54 \times 7}{22 \times 0.7 \times 0.7} \\
\Rightarrow & h=\frac{154 \times 7 \times 10 \times 10}{22 \times 7 \times 7 \times 100}=1 \mathrm{~m}
\end{array}
$$

Hence, the height of the cylinder is 1 m .

Question 6:

A milk tank is in the form of cylinder whose radius is 1.5 m and length is 7 m . Find the quantity of milk in liters that can be stored in the tank.

Answer 6:

Given: Radius of cylindrical tank $(r)=1.5 \mathrm{~m}$
And Height of cylindrical tank $(h)=7 \mathrm{~m}$
Volume of cylindrical tank $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 1.5 \times 1.5 \times 7 \\
& =49.5 \mathrm{~cm}^{3} \\
& =49.5 \times 1000 \text { liters } \\
& =49500 \text { liters }
\end{aligned}\left[\because 1 \mathrm{~m}^{3}=1000 \text { liters }\right]
$$

Hence, the required quantity of milk is 49500 liters.

Question 7:

If each edge of a cube is doubled,
(i) how many times will its surface area increase?
(ii) how many times will its volume increase?

Emini Answer 7:

(i) Let the edge of cube be l.

Since, Surface area of the cube (A) $=6 l^{2}$
When edge of cube is doubled, then
Surface area of the cube $\left(A^{\prime}\right)=6(2 l)^{2}=6 \times 4 l^{2}=4 \times 6 l^{2}$

$$
\mathrm{A}^{\prime}=4 \times \mathrm{A}
$$

Hence, the surface area will increase four times.
(ii) Volume of cube (V) $=l^{3}$

When edge of cube is doubled, then
Volume of cube (V^{\prime}) $=(2 l)^{3}=8 l^{3}$
$\mathrm{V}^{\prime}=8 \mathrm{xV}$
Hence, the volume will increase 8 times.

Question 8:

Water is pouring into a cuboidal reservoir at the rate of 60 liters per minute. If the volume of reservoir is $108 \mathrm{~m}^{3}$, find the number of hours it will take to fill the reservoir.

Emini Answer 8:

Given: volume of reservoir $=108 \mathrm{~m}^{3}$
Rate of pouring water into cuboidal reservoir $=60$ liters/minute

$$
\begin{aligned}
& =\frac{60}{1000} \mathrm{~m}^{3} / \text { minute } \quad\left[\because 1 l=\frac{1}{1000} \mathrm{~m}^{3}\right] \\
& =\frac{60 \times 60}{1000} \mathrm{~m}^{3} / \text { hour }
\end{aligned}
$$

$\because \quad \frac{60 \times 60}{1000} \mathrm{~m}^{3}$ water filled in reservoir will take $=1$ hour
$\therefore \quad 1 \mathrm{~m}^{3}$ water filled in reservoir will take $=\frac{1000}{60 \times 60}$ hours
$\therefore \quad 108 \mathrm{~m}^{3}$ water filled in reservoir will take $=\frac{108 \times 1000}{60 \times 60}$ hours $=30$ hours
It will take 30 hours to fill the reservoir.

