AMITY INTLL (SAKET)

SUMMATIVE ASSESSMENT – I, 2016-17 MATHEMATICS

Class - IX

Time Allowed : 3 hours Maximum Marks: 90

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.
- 3. There is no overall choice in this question paper.
- 4. Use of calculator is not permitted.

SECTION-A

Question numbers 1 to 4 carry one mark each.

Find the value of $\frac{3^0 + 5^0}{4^0}$

Using appropriate identity, factorise $4x^2 - \frac{y^2}{9}$.

The two angles measuring $(30^{\circ} - a)$ and $(125^{\circ} + 2a)$ are supplementary to each other. Find the value of a.

The area of triangle of base 35 cm is 420 cm². Find the altitude.

SECTION-E

Question numbers 5 to 10 carry two marks each.

Insert three rational numbers between $\frac{-1}{3}$ and $\frac{-2}{3}$.

Find the remainder when the polynomial $f(x) = x^3 + 4x^2 - 3x + 5$ is divided by x + 4.

Define the terms and also draw them:

- (i) Parallel lines (ii) Perpendicular lines
- In the figure $l \parallel m$. If $\angle P = 90^\circ$, $\angle RQP = 40^\circ$ and $\angle PQS = 20^\circ$, then find $\angle R$ and $\angle S$.

1

1

Find distances of following points from y – axis: (3, 0), (0, -3), (2, -5) and (-3, -1)10 Find the area of the right angled triangle in which sides other than hypotenuse are 18 cm and 2 80 cm. Also, find the perimeter of the triangle. Question numbers 11 to 20 carry three marks each. Represent $\sqrt{8.5}$ on the number line. 11 $\frac{5+\sqrt{11}}{3-2\sqrt{11}}=x+y\sqrt{11}$ है, तो x और y के मान ज्ञात कीर्जिए। If $\frac{5+\sqrt{11}}{3-2\sqrt{11}} = x + y\sqrt{11}$, find the values of x and y. If $x + \frac{1}{x} = 6$, find the value of $x^4 + \frac{1}{x^4}$ Without actually calculating the cubes, find the value of $100^3 - 60^3 - 40^3$. In the given figure, PO \perp AB. If x: y: z=1:3:5, then find the measures of x, y and z. Prove that if two lines intersect, vertically opposite angles are equal. Find *x* and *y* in the given figure. 17

3

3

3

3

3

3°

In given figure AD is the median of \triangle ABC. BM and CN are perpendiculars drawn from B and C to AD and AD produced respectively. Show that BM = CN.

19

State the quadrants in which the following points lie and also plot the points to verify your 3 answer:

$$(-2, 3), (5, 4), (4, -2), (-2, -2)$$

20

The sides of a triangle are in the ratio 3:4:5. If perimeter of the triangle is 360 m, find its area using Heron's formula. Also find cost of fencing the triangle with barbed wire at the rate of Rs. 2 per meter.

SECTION-D

Question numbers 21 to 31 carry four marks each.

If
$$a = \frac{2 + \sqrt{3}}{2}$$
, then find the value of $a^2 + \frac{1}{a^2}$

4

4

22 Final the value of :

 $(216)^{\frac{1}{3}} + 2 (243)^{\frac{1}{5}} - 3 (256)^{\frac{1}{8}}$

23

Using factor theorem, find the value of 'a', if $2x^4 - ax^3 + 4x^2 - x + 2$ is divisible by 2x + 1.

Show by long division that x-3 in a factor of $2x^4+3x^3-26x^2-5x+6$.

4

4

(-25

Using factor theorem, show that (a+b), (b+c) and (c+a) are factors of $(a+b+c)^3-(a^3+b^3+c^3)$.

26)

Without actually calculating the cubes, find the value of $(-1)^3 + (-2)^3 + (-3)^3 + (-4)^3 + 2(5)^3$. 4 Also write the identity used.

27

On Environment day, people in a colony were trying to develop a garden in the region ABC and a pond for fishes in the triangular region FED. What value is being exhibited by them by doing so?

In the given figure below BA \perp AC, DE \perp DF

Such that BA = DE and BF = EC

Show that $\triangle ABC \cong \triangle DEF$

20

It is known that a-c=25 and that a=b. Show that b-c=25. Write the Euclid's axiom that best 4

illustrates this statement. Also give two more axioms other than the axiom used in the above situation.

29

In the given figure. $\angle ABC = 30^{\circ}$, $\angle EDF = (40 - x)^{\circ}$ and $\angle ADE = (13x + 20)^{\circ}$. Show that BC is 4 parallel to DE:

30/

If two lines intersect each other, prove that the vertically opposite angles are equal. Using this 4 result, find the value of *x* in the given figure.

In the figure, OA = OB, OC = OD and $\angle AOB = \angle COD$. Prove that AC = BD.

1

-0000000-