| 2 3 | | | | |-----|----------|------|------| | No | | | NQ. | | No | ω | JACO | AACK | ## Amity International School, Saket Unit Test - Mathematics Class - IX Date - 24.7.2017 Term - First Time - 1 hour Cycle - 2 MM - 30 Section A: 3x1 = 3 marks (Q.1 to Q.3 carry 1 mark each) - 1. Does the graph of equation 2x + 3y = 9 pass through the point (-1, 2) or not. - 2. In which quadrant does the point whose abscissa is -6 and ordinate is 3 lie? - 3 For what value or values of 'c' do the graph of a linear equation ax + by + c + 0 pass through the origin? Section – B: $3 \times 2 = 6$ marks (Q.4 to Q.6 carry 2 marks each) - 4. If (2p-1, p) is a solution of the equation 10x 9y = 12, then find the value of p. - 5. The measure of an angle is four times the measure of its supplementary angle. Find the two angles. - 6. In the adjoining figure, AB is parallel to CD. Find the value of x. Section – C: $3 \times 3 = 9$ marks (Q.7 to Q.9 carry 3 marks each) - 7. Find solutions of the form (a, 0) and (0, b) for the equation 3x 2y + 6 = 0. - 8. Write the coordinates of a rectangle whose length and breadth are 5 and 3 units respectively such that one vertex is at the origin, longer side lies on the X-axis and one of the vertices lies in the third quadrant. 9. The side BC of \triangle ABC is produced to point D. The bisector of \angle ABC and \angle ACD meet at a point E. If \angle BAC = 68°, then find the measure of \angle BEC. Section – D: $3 \times 4 = 12$ marks (Q.10 to Q.12 carry 4 marks each) - 10.BO and CO are angle bisectors of the external angles of \triangle ABC (obtained by producing sides AB and AC). Prove that \angle BOC = 90° $\frac{1}{2}$ \angle A - (11) If two parallel lines are intersected by a transversal, prove that the bisectors of two pairs of interior angles enclose a rectangle. - 12. Draw the graph of the equation 3x + 4y + 12 = 0 and shade the region bounded by this line and the two axes.