EXERCISE 2.1

Write the correct answer in each of the following:

1. Which one of the following is a polynomial?
(a) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$
(b) $\sqrt{2 x}-1$
(c) $x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
(d) $\frac{x-1}{x+1}$

Sol. (a) $\frac{x^{2}}{2}-\frac{2}{x^{2}}=\frac{x^{2}}{2}-2 x^{-2}$
Second term is $-2 x^{-2}$. Exponent of x^{-2} is -2 , which is not a whole number. So, this algebraic expression is not a polynomial.
(b) $\sqrt{2 x}-1=\sqrt{2} x^{\frac{1}{2}}-1$

First term is $\sqrt{2} x^{\frac{1}{2}}$. Here, the exponent of the second term, i.e., $x^{\frac{1}{2}}$ is $\frac{1}{2}$, which is not a whole number. So, this algebraic expression is not a polynomial.
(c) $x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}=x^{2}+3 x$

In this expression, we have only whole numbers as the exponents of the variable in each term. Hence, the given algebraic expression is a polynomial.
2. $\sqrt{2}$ is a polynomial of degree
(a) 2
(b) 0
(c) 1
(d) $\frac{1}{2}$

Sol. $\sqrt{2}$ is a constant polynomial. The only term here is $\sqrt{2}$ which can be written as $\sqrt{2} x^{0}$. So, the exponent of x is zero. Therefore, the degree of the polynomial is 0 .
Hence, (b) is the correct answer.
3. Degree of the polynomial of $4 x^{4}+0 x^{3}+0 x^{5}+5 x+7$ is
(a) 4
(b) 5
(c) 3
(d) 7

Sol. The highest power of the variable in a polynomial is called the degree of the polynomial. In this polynomial, the term with highest power of x is $4 x^{4}$. Highest power of x is 4 , so the degree of the given polynomial is 4 .
4. Degree of the zero polynomial
(a) 0
(b) 1
(c) Any natural number
(d) Not defined.

Sol. Degree of the zero polynomial (0) is not defined. Hence, (d) is the correct answer.
5. If $p(x)=x^{2}-2 \sqrt{2 x}+1$, then $p(2 \sqrt{2})$ is equal to
(a) 0
(b) 1
(c) $4 \sqrt{2}$
(d) $8 \sqrt{2}+1$

Sol. We have $p(x)=x^{2}-2 \sqrt{2 x}+1$

$$
\begin{aligned}
\therefore \quad p(2 \sqrt{2}) & =(2 \sqrt{2})^{2}-2 \sqrt{2}(2 \sqrt{2})+1 \\
& =8-8+1 \\
& =1
\end{aligned}
$$

Hence, (b) is the correct answer.
6. The value of the polynomial $5 x-4 x^{2}+3$, when $x=-1$ is
(a) -6
(b) 6
(c) 2
(d) -2

Sol. Let $p(x)=5 x-4 x^{2}+3$
Therefore, $\quad p(-1)=5(-1)-4(-1)^{2}+3=-5-4+3=-6$
Hence, (a) is the correct answer.
7. If $p(x)=x+3$, then $p(x)+p(-x)$ is equal to
(a) 3
(b) $2 x$
(c) 0
(d) 6

Sol. We have $p(x)=x+3$, then

$$
p(-x)=-x+3
$$

Therefore, $p(x)+p(-x)=x+3+(-x+3)=x+3-x+3=6$
Hence, (d) is the correct answer.
8. Zero of the zero polynomial is
(a) 0
(b) 1
(c) Any real number
(d) Not defined

Sol. The zero (or degree) of the zero polynomial is undefined.
Hence, (d) is the correct answer.
9. Zero of the polynomial $p(x)=2 x+5$ is
(a) $-\frac{2}{5}$
(b) $-\frac{5}{2}$
(c) $\frac{2}{5}$
(d) $\frac{5}{2}$

Sol. Finding a zero of $p(x)$ is the same as solving an equation $p(x)=0$.
Now,

$$
p(x)=0 \Rightarrow 2 x+5=0
$$

which gives us $\quad x=-\frac{5}{2}$.

Therefore, $-\frac{5}{2}$ is the zero of the polynomial.
Hence, (b) is the correct answer.
10. One of the zeroes of the polynomial $2 x^{2}+7 x-4$ is
(a) 2
(b) $\frac{1}{2}$
(c) $-\frac{1}{2}$
(d) -2

Sol. We have $p(x)=2 x^{2}+7 x+4$
(a)

$$
\begin{aligned}
p(2) & =2(2)^{2}+7(2)-4 \\
& =8+14-4 \\
& =18 \neq 0
\end{aligned}
$$

(b)

$$
\begin{aligned}
p\left(\frac{1}{2}\right) & =2\left(\frac{1}{2}\right)^{2}+7\left(\frac{1}{2}\right)-4 \\
& =2 \times \frac{1}{4}+\frac{7}{2}-4=\frac{1}{2}+\frac{7}{2}-4=4-4=0
\end{aligned}
$$

(c)

$$
\begin{aligned}
p\left(-\frac{1}{2}\right) & =2\left(-\frac{1}{2}\right)^{2}+7\left(-\frac{1}{2}\right)-4 \\
& =2 \times \frac{1}{4}-\frac{7}{2}-4=\frac{1}{2}-\frac{7}{2}-4 \\
& =-3-4 \\
& =-7 \neq 0
\end{aligned}
$$

(d)

$$
\begin{aligned}
p(-2) & =2(-2)^{2}+7(-2)-4 \\
& =8-14-4=-10 \neq 0
\end{aligned}
$$

As $p\left(\frac{1}{2}\right)=0$, we say that $\frac{1}{2}$ is a zero of the polynomial. Hence, $\frac{1}{2}$ is one of the zeroes of the polynomial $2 x^{2}+7 x-4$.
Hence, (b) is the correct answer.
11. If $x^{51}+51$ is divided by $x+1$, the remainder is
(a) 0
(b) 1
(c) 49
(d) 50

Sol. If $p(x)$ is divided by $x+a$, then the remainder is $p(-a)$.
Here $p(x)=x^{51}+51$ is divided by $x+1$, then
Remainder $=p(-1)=(-1)^{51}+51=-1+51=50$
Hence, (d) is the correct answer.
12. If $x+1$ is a factor of the polynomial $2 x^{2}+k x$, then the value of k is
(a) -3
(b) 4
(c) 2
(d) -2

Sol. Let $p(x)=2 x^{2}+k x$
If $x+1$ is a factor of $p(x)$, then by factor theorem $p(-1)=0$
Now,

$$
p(-1)=0 \Rightarrow 2(-1)^{2}+k(-1)=0
$$

$\Rightarrow \quad 2-k=0 ; k=2$
Hence, (c) is the correct answer.
13. $x+1$ is a factor of the polynomial
(a) $x^{3}+x^{2}-x+1$
(b) $x^{3}+x^{2}+x+1$
(c) $x^{4}+x^{3}+x^{2}+1$
(d) $x^{4}+3 x^{3}+3 x^{2}+x+1$

Sol. If $x+1$ is a factor of $p(x)$, then $p(-1)=0$
(a) Let $p(x)=x^{3}+x^{2}-x+1$

$$
\begin{aligned}
\therefore \quad p(-1) & =(-1)^{3}+(-1)^{2}-(-1)+1 \\
& =-1+1+1+1=2 \neq 0
\end{aligned}
$$

So, $x+1$ is not a factor of $p(x)$.
(b) Let $p(x)=x^{3}+x^{2}+x+1$

$$
\begin{aligned}
\therefore \quad p(-1) & =(-1)^{3}+(-1)^{2}+(-1)+1 \\
& =-1+1-1+1=0
\end{aligned}
$$

(c) Let $p(x)=x^{4}+x^{3}+x^{2}+1$

$$
\begin{aligned}
\therefore \quad p(-1) & =(-1)^{4}+(-1)^{3}+(-1)^{2}+1 \\
& =1-1+1+1=2 \neq 0
\end{aligned}
$$

(d) Let $p(x)=x^{4}+3 x^{3}+3 x^{2}+x+1$

$$
\begin{aligned}
\therefore \quad p(-1) & =(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1 \\
& =1-3+3-1+1=1 \neq 0
\end{aligned}
$$

Hence, $x+1$ is a factor of $x^{3}+x^{2}+x+1$.
So, (b) is the correct answer.
14. One of the factors of $\left(25 x^{2}-1\right)+(1+5 x)^{2}$ is
(a) $5+x$
(b) $5-x$
(c)
$5 x-1$
(d) $10 x$

Sol. $\left(25 x^{2}-1\right)+(1+5 x)^{2}=(5 x)^{2}-1^{2}+(5 x+1)^{2}$

$$
\begin{aligned}
& =(5 x-1)(5 x+1)+(5 x+1)^{2}=(5 x+1)(5 x-1+5 x+1) \\
& =(5 x+1)(10 x)=10 x(5 x+1)
\end{aligned}
$$

Hence, one of the factors of $\left(25 x^{2}-1\right)+(1+5 x)^{2}$ is $10 x$. Therefore, (d) is the correct answer.
15. The value of $249^{2}-248^{2}$ is
(a) 1^{2}
(b) 477
(c) 487
(d) 497

Sol. $\quad(249)^{2}-(248)^{2}=(249+248)(249-248)$

$$
=(497)(1)=497
$$

Hence, (d) is the correct answer.
16. The factorisation of $4 x^{2}+8 x+3$ is
(a) $(x+1)(x+3)$
(b) $(2 x+1)(2 x+3)$
(c) $(2 x+2)(2 x+5)$
(d) $(2 x-1)(2 x-3)$

Sol. $\quad 4 x^{2}+8 x+3=4 x^{2}+6 x+2 x+3$

$$
=2 x(2 x+3)+1(2 x+3)=(2 x+1)(2 x+3)
$$

Hence, (b) is the correct answer.
17. Which of the following is a factor of $(x+y)^{3}-\left(x^{3}+y^{3}\right)$?
(a) $x^{2}+y^{2}+2 x y$
(b) $x^{2}+y^{2}-x y$
(c) $x y^{2}$
(d) $3 x y$

Sol. $(x+y)^{3}-\left(x^{3}+y^{3}\right)=x^{3}+y^{3}+3 x y(x+y)-x^{3}-y^{3}$

$$
=3 x y(x+y)
$$

So, $3 x y$ is a factor of $(x+y)^{3}-\left(x^{3}+y^{3}\right)$.
Hence, (d) is the correct answer.
18. The coefficient of x in the expansion of $(x+3)^{3}$ is
(a) 1
(b) 9
(c) 18
(d) 27

Sol. Using $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$, we get

$$
\begin{aligned}
(x+3)^{3} & =x^{3}+3^{3}+3 \times x \times 3(x+3) \\
& =x^{3}+27+9 x^{2} \times 27 x
\end{aligned}
$$

Therefore, the coefficient of x is 27 .
Hence, (d) is the correct answer.
19. If $\frac{x}{y}+\frac{y}{x}=-1$, the value of $x^{3}-y^{3}$ is
(a) 1
(b) -1
(c) 0
(d) $\frac{1}{2}$

Sol.

$$
\frac{x}{y}+\frac{y}{x}=-1 \quad \Rightarrow \quad \frac{x^{2}+y^{2}}{x y}=-1
$$

$\Rightarrow \quad x^{2}+y^{2}=-x y$
Now,

$$
\begin{aligned}
x^{3}-y^{3} & =(x-y)\left(x^{2}+y^{2}+x y\right) \\
& =(x-y)(-x y+x y) \quad\left[\because x^{2}+y^{2}=-x y\right] \\
& =(x-y)(0) \\
& =0
\end{aligned}
$$

Hence, (c) is the correct answer.
20. If $49 x^{2}-b=\left(7 x+\frac{1}{2}\right)\left(7 x-\frac{1}{2}\right)$, then the value of b is
(a) 0
(b) $\frac{1}{\sqrt{2}}$
(c) $\frac{1}{4}$
(d) $\frac{1}{2}$
$49 x^{2}-b=\left(7 x+\frac{1}{2}\right)\left(7 x-\frac{1}{2}\right)$
$\Rightarrow \quad 49 x^{2}-b=(7 x)^{2}-\left(\frac{1}{2}\right)^{2}$ $=49 x^{2}-\frac{1}{4} \quad\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]$

Sol.

So, we get $b=\frac{1}{4}$.
Hence, (c) is the correct answer.
21. If $a+b+c=0$, then the value of $a^{3}+b^{3}+c^{3}$ is equal to
(a) 0
(b) $a b c$
(c) $3 a b c$
(d) $2 a b c$

Sol. We know that $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
As $a+b+c=0$, so, $a^{3}+b^{3}+c^{3}-3 a b c=(0)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0$
Hence, $a^{3}+b^{3}+c^{3}=3 a b c$.
Therefore, (c) $3 a b c$ is the correct answer.

EXERCISE 2.2

1. Which of the following expressions are polynomials? Justify your answer.
(i) 8
(ii) $\sqrt{3} x^{2}-2 x$
(iii) $1-\sqrt{5 x}$
(iv) $\frac{1}{5 x^{-2}}+5 x+7$
(v) $\frac{(x-2)(x-4)}{x}$
(vi) $\frac{1}{x+1}$
(vii) $\frac{1}{7} a^{3}-\frac{2}{\sqrt{3}} a^{2}+4 a-7$
(viii) $\frac{1}{2 x}$

Sol. (i) 8 is a constant polynomial.
(ii) $\sqrt{3} x^{2}-2 x$

In each term of this expression, the exponent of the variable x is a whole number. Hence, it is a polynomial.
(iii) $1-\sqrt{5 x}=1-\sqrt{5} x^{\frac{1}{2}}$

Here, the exponent of the second term, i.e., $x^{\frac{1}{2}}$ is $\frac{1}{2}$, which is not a whole number. Hence, the given algebraic expression is not a polynomial.
(iv) $\frac{1}{5 x^{-2}}+5 x+7=\frac{1}{5} x^{2}+5 x+7$

In each term of this expression, the exponent of the variable x is a whole number. Hence, it is a polynomial.
(v) $\frac{(x-2)(x-4)}{x}=\frac{x^{2}-6 x+8}{x}=x-6+\frac{8}{x}=x-6+8 x^{-1}$

Here, the exponent of variable x in the third term, i.e., in $8 x^{-1}$, is -1 , which is not a whole number. So, this algebraic expression is not a polynomial.
(vi) $\frac{1}{x+1}=(x+1)^{-1}$ which cannot be reduced to an expression in which the exponent of the variable x have only whole numbers in each of its terms. So, this algebraic expression is not a polynomial.
(vii) $\frac{1}{7} a^{3}-\frac{2}{\sqrt{3}} a^{2}+4 a-7$

In this expression, the exponent of a in each term is a whole number, so this expression is a polynomial.
(viii) $\frac{1}{2 x}=\frac{1}{2} x^{-1}$

Here, the exponent of the variable x is -1 , which is not a whole number. So, this algebraic expression is not a polynomial.
2. Write whether the following statements are true or false. Justify your answer.
(i) A binomial can have atmost two terms.
(ii) Every polynomial is a binomial.
(iii) A binomial may have degree 5 .
(iv) Zero of a polynomial is always 0 .
(v) A polynomial cannot have more than one zero.
(vi) The degree of the sum of two polynomials each of degree 5 is always 5 .
Sol. (i) The given statement is false because binomial have exactly two terms.
(ii) A polynomial can be a monomial, binomial trinomial or can have finite number of terms. For example, $x^{4}+x^{3}+x^{2}+1$ is a polynomial but not binomial.
Hence, the given statement is false.
(iii) The given statement is true because a binomial is a polynomial whose degree is a whole number ≥ 1. For example, $x^{5}-1$ is a binomial of degree 5 .
(iv) The given statement is false, because zero of polynomial can be any real number.
(v) The given statement is false, because a polynomial can have any number of zeroes which depends on the degree of the polynomial.
(vi) The given statement is false. For example, consider the two polynomials $-x^{5}+3 x^{2}+4$ and $x^{5}+x^{4}+2 x^{3}+3$. The degree of each of these polynomials is 5 . Their sum is $x^{4}+2 x^{3}+3 x^{2}+7$. The degree of this polynomial is not 5 .

EXERCISE 2.3

1. Classify the following polynomials as polynomials in one variable, two variables etc.
(i) $x^{2}+x+1$
(ii) $y^{3}-5 y$
(iii) $x y+y z+z x$
(iv) $x^{2}-2 x y+y^{2}+1$

Sol. (i) $x^{2}+x+1$ is a polynomial in one variable.
(ii) $y^{3}-5 y$ is a polynomial in one variable.
(iii) $x y+y z+z x$ is a polynomial in three variables.
(iv) $x^{2}-2 x y+y^{2}+1$ is a polynomial in two variables.
2. Determine the degree of each of the following polynomials:
(i) $2 x-1$
(ii) -10
(iii) $x^{3}-9 x+3 x^{5}$
(iv) $y^{3}\left(1-y^{4}\right)$

Sol. (i) Since the highest power of x is 1 , the degree of the polynomial $2 x-1$ is 1 .
(ii) - 10 is a non-zero constant. A non-zero constant term is always regarded as having degree 0 .
(iii) Since the highest power of x is 5, the degree of the polynomial $x^{3}-9 x+3 x^{5}$ is 5.
(iv)

$$
y^{3}\left(1-y^{4}\right)=y^{3}-y^{7}
$$

Since the highest power of y is 7 , the degree of the polynomial is 7 .
3. For the polynomial $\frac{x^{3}+2 x+1}{5}-\frac{7}{2} x^{2}-x^{6}$, write
(i) the degree of the polynomial.
(ii) the coefficient of x^{3}.
(iii) the coefficient of x^{6}.
(iv) the constant term.

Sol. (i) We know that highest power of variable in a polynomial is the degree of the polynomial.
In the given polynomial, the term with highest of x is $-x^{6}$ and the exponent of x in this term in 6 .
(ii) The coefficient of x^{3} is $\frac{1}{5}$. (iii) The coefficient of x^{6} is -1 .
(iv) The constant term is $\frac{1}{5}$.
4. Write the coefficient of x^{2} in each of the following:
(i) $\frac{\pi}{6} x+x^{2}-1$
(ii) $3 x-5$
(iii) $(x-1)(3 x-4)$
(iv) $(2 x-5)\left(2 x^{2}-3 x+1\right)$

Sol. (i) The coefficient of x^{2} in the given polynomial is 1 .
(ii) The given polynomial can be written as $0 . x^{2}+3 x-5$. So, the coefficient of x^{2} in the given polynomial is 0 .
(iii) The given polynomial can be written as:

$$
\begin{aligned}
(x-1)(3 x-4) & =3 x^{2}-4 x-3 x+4 \\
& =3 x^{2}-7 x+4
\end{aligned}
$$

So, the coefficient of x^{2} in the given polynomial is 3 .
(iv) The given polynomial can be written as:

$$
\begin{aligned}
(2 x-5)\left(2 x^{2}-3 x+1\right) & =4 x^{3}-6 x^{2}+2 x-10 x^{2}+15 x-5 \\
& =4 x^{3}-16 x^{2}+17 x-5
\end{aligned}
$$

So, the coefficient of x^{2} in the given polynomial is -16 .
5. Classify the following as a constant, linear, quadratic and cubic polynomials:
(i) $2-x^{2}+x^{3}$
(ii) $3 x^{3}$
(iii) $5 t-\sqrt{7}$
(iv) $4-5 y^{2}$
(v) 3
(vi) $2+x$
(vii) $y^{3}-y$
(viii) $1+x+x^{2}$
(ix) t^{2}
(x) $\sqrt{2} x-1$

EXERCISE 2.3

1. Classify the following polynomials as polynomials in one variable, two variables etc.
(i) $x^{2}+x+1$
(ii) $y^{3}-5 y$
(iii) $x y+y z+z x$
(iv) $x^{2}-2 x y+y^{2}+1$

Sol. (i) $x^{2}+x+1$ is a polynomial in one variable.
(ii) $y^{3}-5 y$ is a polynomial in one variable.
(iii) $x y+y z+z x$ is a polynomial in three variables.
(iv) $x^{2}-2 x y+y^{2}+1$ is a polynomial in two variables.
2. Determine the degree of each of the following polynomials:
(i) $2 x-1$
(ii) -10
(iii) $x^{3}-9 x+3 x^{5}$
(iv) $y^{3}\left(1-y^{4}\right)$

Sol. (i) Since the highest power of x is 1 , the degree of the polynomial $2 x-1$ is 1 .
(ii) - 10 is a non-zero constant. A non-zero constant term is always regarded as having degree 0 .
(iii) Since the highest power of x is 5, the degree of the polynomial $x^{3}-9 x+3 x^{5}$ is 5.
(iv)

$$
y^{3}\left(1-y^{4}\right)=y^{3}-y^{7}
$$

Since the highest power of y is 7 , the degree of the polynomial is 7 .

$$
\begin{aligned}
& =(4-8+3)-(1+4+3)+\left(\frac{1}{4}-2+3\right) \\
& =-1-8+\frac{5}{4} \\
& =-9+\frac{5}{4}=\frac{-36+5}{4}=\frac{-31}{4}
\end{aligned}
$$

9. Find $p(0), p(1), p(-2)$ for the following polynomials:
(i) $p(x)=10 x-4 x^{2}-3$
(ii) $p(y)=(y+2)(y-2)$

Sol. (i) We have $\quad p(x)=10 x-4 x^{2}-3$

$$
\begin{aligned}
\therefore \quad p(0) & =10(0)-4(0)^{2}-3 \\
& =0-0-3=-3
\end{aligned}
$$

And,

$$
p(1)=10(1)-4(1)^{2}-3
$$

$$
=10-4-3=10-7=3
$$

And,

$$
\begin{aligned}
p(-2) & =10(-2)-4(-2)^{2}-3 \\
& =-20-4(4)-3=-20-16-3=-39
\end{aligned}
$$

(ii) We have $p(y)=(y+2)(y-2)=y^{2}-4$

$$
\begin{aligned}
\therefore \quad p(0) & =(0)^{2}-4 \\
& =0-4=-4
\end{aligned}
$$

And,

$$
p(1)=(1)^{2}-4
$$

$$
=1-4=-3
$$

And,

$$
\begin{aligned}
p(-2) & =(-2)^{2}-4 \\
& =4-4=0
\end{aligned}
$$

10. Verify whether the following are True or False.
(i) -3 is a zero of $x-3$.
(ii) $-\frac{1}{3}$ is a zero of $3 x+1$.
(iii) $\frac{-4}{5}$ is a zero of $4-5 y$.
(iv) 0 and 2 are the zeros of $t^{2}-2 \mathrm{t}$.
(v) -3 is a zero of $y^{2}+y-6$.

Sol. A zero of a polynomial $p(x)$ is a number c such that $p(c)=0$
(i) Let $p(x)=x-3$
$\therefore \quad p(-3)=-3-3=-6 \neq 0$
Hence, -3 is not a zero of $x-3$.
(ii) Let $p(x)=3 x+1$
$\therefore \quad p\left(-\frac{1}{3}\right)=3\left(-\frac{1}{3}\right)+1=-1+1=0$
Hence, $-\frac{1}{3}$ is a zero of $p(x)=3 x+1$.
(iii) Let $p(y)=4-5 y$

$$
\therefore \quad p\left(-\frac{4}{5}\right)=4-5\left(\frac{-4}{5}\right)=4+4=8 \neq 0
$$

Hence, $-\frac{4}{5}$ is not a zero of $4-5 y$.
(iv) Let $p(t)=t^{2}-2 t$
$\therefore \quad p(0)=(0)^{2}-2(0)=0$
and $\quad p(2)=(2)^{2}-2(2)=4-4=0$
Hence, 0 and 2 are zeroes of the polynomial $p(t)=t^{2}-2 t$.
(v) $\operatorname{Let} p(y)=y^{2}+y-6$
$\therefore \quad p(-3)=(-3)^{2}+(-3)-6=9-3-6=0$
Hence, -3 is a zero of the polynomial $y^{2}+y-6$.
11. Find the zeroes of the polynomial in each of the following:
(i) $p(x)=x-4$
(ii) $g(x)=3-6 x$
(iii) $q(x)=2 x-7$
(iv) $h(y)=2 y$

Sol. (i) Solving the equation $p(x)=0$, we get $x-4=0$, which gives us $x=4$
So, 4 is a zero of the polynomial $x-4$.
(ii) Solving the equation $g(x)=0$, we get
$3-6 x=0$, which gives us $x=\frac{1}{2}$
So, $\frac{1}{2}$ is a zero of the polynomial $3-6 x$.
(iii) Solving the equation $q(x)=0$, we get
$2 x-7=0$, which gives us $x=\frac{7}{2}$
So, $\frac{7}{2}$ is a zero of the polynomial $2 x-7$.
(iv) Solving the equation $h(y)=0$, we get
$2 y=0$, which gives us $y=0$
So, 0 is a zero of the polynomial $2 y$.
12. Find the zeroes of the polynomial $(x-2)^{2}-(x+2)^{2}$.

Sol. Let $p(x)=(x-2)^{2}-(x+2)^{2}$
As finding a zero of $p(x)$, is same as solving the equation $p(x)=0$
So, $p(x)=0 \Rightarrow(x-2)^{2}-(x+2)^{2}=0$
$\Rightarrow(x-2+x+2)(x-2-x-2)=0$
$\Rightarrow 2 x(-4)=0 \Rightarrow-8 x=0 \Rightarrow x=0$
Hence, $x=0$ is the only one zero of $p(x)$.
13. By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial: $x^{4}+1 ; x+1$.
Sol. By actual division, we have

$$
x-1 \begin{aligned}
& x^{3}+x^{2}+x+1 \\
& \begin{array}{l}
x^{4}+1 \\
x^{4} \mp x^{3}
\end{array} \\
& \hline \begin{array}{l}
x^{3}+1 \\
x^{3}-x^{2}
\end{array} \\
& \hline \begin{array}{l}
x^{2}+1 \\
x^{2}-x \\
-\quad x+1 \\
\hline-x-1 \\
-\quad x+1 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

14. By Remainder Theorem find the remainder, when $p(x)$ is divided by $g(x)$, where
(i) $p(x)=x^{3}-2 x^{2}-4 x-1, \quad g(x)=x+1$
(ii) $p(x)=x^{3}-3 x^{2}+4 x+50, \quad g(x)=x-3$
(iii) $p(x)=4 x^{3}-12 x^{2}+14 x-3, g(x)=2 x-1$
(iv) $p(x)=x^{3}-6 x^{2}+2 x-4, g(x)=1-\frac{3}{2} x$

Sol. (i) We have $g(x)=x+1$
$\Rightarrow \quad x+1=0$
$\Rightarrow \quad x=-0$
Remainder $=p(-1)$
$=(-1)^{3}-2(-1)^{2}-4(-1)-1=-1-2+4-1$
$=0$
(ii) We have $g(x)=x-3$
$\Rightarrow \quad x-3=0$
$\Rightarrow \quad x=3$
Remainder $=p(3)$
$=(3)^{3}-3(3)^{2}+4(3)+50=27-27+12+50$
$=62$
(iii) We have $g(x)=2 x-1$
$\Rightarrow \quad 2 x-1=0$
$\Rightarrow \quad 2 x=1 \Rightarrow x=\frac{1}{2}$

$$
\begin{aligned}
\text { Remainder } & =p\left(\frac{1}{2}\right) \\
& =4\left(\frac{1}{2}\right)^{3}-12\left(\frac{1}{2}\right)^{2}+14\left(\frac{1}{2}\right)-3 \\
& =4\left(\frac{1}{8}\right)-12\left(\frac{1}{4}\right)+7-3 \\
& =\frac{1}{2}-3+7-6=\frac{1}{2}-2=\frac{-3}{2}
\end{aligned}
$$

(iv) $g(x)=0 \quad \Rightarrow 1-\frac{3}{2} x=0 ; x=\frac{2}{3}$

$$
\begin{aligned}
\text { Remainder } & =p\left(\frac{2}{3}\right)=\frac{8}{27}-\frac{24}{9}+\frac{4}{3}-4 \\
& =\frac{8-72+36-108}{27}=\frac{-136}{27}
\end{aligned}
$$

15. Check whether $p(x)$ is a multiple of $g(x)$ or not:
(i) $p(x)=x^{3}-5 x^{2}+4 x-3, g(x)=x-2$
(ii) $p(x)=2 x^{3}-11 x^{2}-4 x+5, g(x)=2 x+1$

Sol. (i) $p(x)$ will be a multiple $g(x)$ if $g(x)$ divides $p(x)$.
Now, $g(x)=x-2$ gives $x=2$

$$
\begin{aligned}
\text { Remainder } & =p(2)=(2)^{3}-5(2)^{2}+4(2)-3 \\
& =8-5(4)+8-3=8-20+8-3 \\
& =-7
\end{aligned}
$$

Since remainder $\neq 0$, so $p(x)$ is not a multiple of $g(x)$.
(ii) $p(x)$ will be a multiple of $g(x)$ if $g(x)$ divides $p(x)$.

$$
\text { Now, } g(x)=2 x+1 \text { give } x=-\frac{1}{2}
$$

$$
\begin{aligned}
\text { Remainder } & =p\left(\frac{-1}{2}\right)=2\left(\frac{-1}{2}\right)^{3}-11\left(\frac{-1}{2}\right)^{2}-4\left(\frac{-1}{2}\right)+5 \\
& =2\left(\frac{-1}{8}\right)-11\left(\frac{1}{4}\right)+2+5=\frac{-1}{4}-\frac{11}{4}+7 \\
& =\frac{-1-11+28}{4}=\frac{16}{4}=4
\end{aligned}
$$

Since remainder $\neq 0$, so $p(x)$ is not a multiple of $g(x)$.
16. Show that:
(i) $x+3$ is a factor of $69+11 x-x^{2}+x^{3}$.
(ii) $2 x-3$ is a factor of $x+2 x^{3}-9 x^{2}+12$.

Sol. (i) Let $p(x)=69+11 x-x^{2}+x^{3}, g(x)=x+3$.

$$
g(x)=x+3=0 \text { gives } x=-3
$$

$g(x)$ will be a factor of $p(x)$ if $p(-3)=0$
(Factor theorem)
Now,

$$
\begin{aligned}
p(-3) & =69+11(-3)-(-3)^{2}+(-3)^{3} \\
& =69-33-9-27 \\
& =0
\end{aligned}
$$

Since, $p(-3)=0$, so, $g(x)$ is a factor of $p(x)$.
(ii) Let $p(x)=x+2 x^{3}-9 x^{2}+12$ and $g(x)=2 x-3$

$$
g(x)=2 x-3=0 \text { gives } x=\frac{3}{2}
$$

$g(x)$ will be a factor of $p(x)$ if $p\left(\frac{3}{2}\right)=0$
(Factor theorem)
Now, $\quad p\left(\frac{3}{2}\right)=\frac{3}{2}+2\left(\frac{3}{2}\right)^{3}-9\left(\frac{3}{2}\right)^{2}+12=\frac{3}{2}+2\left(\frac{27}{8}\right)-9\left(\frac{9}{4}\right)+12$

$$
=\frac{3}{2}+\frac{27}{4}-\frac{81}{4}+12=\frac{6+27-81+48}{4}=\frac{0}{4}=0
$$

Since, $p\left(\frac{3}{2}\right)=0$, so, $g(x)$ is a factor of $p(x)$.
17. Determine which of the following polynomials has $x-2$ a factor:
(i) $3 x^{2}+6 x-24$
(ii) $4 x^{2}+x-2$

Sol. We knwo that if $(x-a)$ is a factor of $p(x)$, then $p(a)=0$.
(i) Let $p(x)=3 x^{2}+6 x-24$

If $x-2$ is a factor of $p(x)=3 x^{2}+6 x-24$, then $p(2)$ should be equal to 0 .

$$
\text { Now, } \quad \begin{aligned}
p(2) & =3(2)^{2}+6(2)-24 \\
& =3(4)+6(2)-24 \\
& =12+12-24 \\
& =0
\end{aligned}
$$

\therefore By factor theorem, $(x-2)$ is a factor of $3 x^{2}+6 x-24$.
(ii) Let $p(x)=4 x^{2}+x-2$.

If $x-2$ is a factor of $p(x)=4 x^{2}+x-2$, then, $p(2)$ should be equal to 0 .
Now, $\quad p(2)=4(2)^{2}+2-2$

$$
\begin{aligned}
& =4(4)+2-2 \\
& =16+2-2 \\
& =16 \neq 0
\end{aligned}
$$

$\therefore x-2$ is not a factor of $4 x^{2}+x-2$.
18. Show that $p-1$ is a factor of $p^{10}-1$ and also of $p^{11}-1$.

Sol. If $p-1$ is a factor of $p^{10}-1$, then $(1)^{10}-1$ should be equal to zero.
Now,
$(1)^{10}-1=1-1=0$
Therefore, $p-1$ is a factor of $p^{10}-1$.
Again, if $p-1$ is a factor of $p^{11}-1$, then $(1)^{11}-1$ should be equal to zero.
Now,
$(1)^{11}-1=1-1=0$
Therefore, $p-1$ is a factor of $p^{11}-1$.
Hence, $p-1$ is a factor of $p^{10}-1$ and also of $p^{11}-1$.
19. For what value of m is $x^{3}-2 m x^{2}+16$ divisible by $x+2$?

Sol. If $x^{3}-2 m x^{2}+16$ is divisible by $x+2$, then $x+2$ is a factor of $x^{3}-2 m x^{2}+16$.
Now, let $\quad p(x)=x^{3}-2 m x^{2}+16$.
As $x+2=x-(-2)$ is a factor of $x^{3}-2 m x^{2}+16$
so

$$
p(-2)=0
$$

Now,
$p(-2)=(-2)^{3}-2 m(-2)^{2}+16$

$$
=-8-8 m+16=8-8 m
$$

$$
\begin{aligned}
\text { Now, } & p(-2) & =0 \\
\Rightarrow & 8-8 m & =0 \\
\Rightarrow & m & =8 \div 8 \\
\Rightarrow & m & =1
\end{aligned}
$$

Hence, for $m=1, x+2$ is a factor of $x^{3}-2 m x^{2}+16$, so $x^{3}-2 m x^{2}+16$ is completely divisible by $x+2$.
20. If $x+2 a$ is a factor of $x^{5}-4 a^{2} x^{3}+2 x+2 a+3$, find a.

Sol. Let $p(x)=x^{5}-4 a^{2} x^{3}+2 x+2 a+3$
If $x-(-2 a)$ is a factor of $p(x)$, then $p(-2 a)=0$

$$
\begin{aligned}
\therefore \quad p(-2 a) & =(-2 a)^{5}-4 a^{2}(-2 a)^{3}+2(-2 a)+2 a+3 \\
& =-32 a^{5}+32 a^{5}-4 a+2 a+3 \\
& =-2 a+3
\end{aligned}
$$

Now, $\quad p(-2 a)=0$
$\Rightarrow \quad-2 a+3=0$
$\Rightarrow \quad a=\frac{3}{2}$
21. Find the value of m so that $2 x-1$ be a factor of $8 x^{4}+4 x^{3}-16 x^{2}+10 x+m$.

Sol. Let $p(x)=8 x^{4}+4 x^{3}-16 x^{2}+10 x+m$.
As $(2 x-1)$ is a factor of $p(x)$

$$
\begin{aligned}
& \therefore \\
& \begin{array}{ll}
\therefore & p\left(\frac{1}{2}\right)=0 \\
\Rightarrow & 8\left(\frac{1}{2}\right)^{4}+4\left(\frac{1}{2}\right)^{3}-16\left(\frac{1}{2}\right)^{2}+10\left(\frac{1}{2}\right)+m=0 \\
\Rightarrow & 8\left(\frac{1}{16}\right)+4\left(\frac{1}{8}\right)-16\left(\frac{1}{4}\right)+5+m=0 \\
\Rightarrow & \frac{1}{2}+\frac{1}{2}-4+5+m=0 \\
\Rightarrow & 2+m=0 \Rightarrow m=-2
\end{array}
\end{aligned}
$$

22. If $x+1$ is a factor of $a x^{3}+x^{2}-2 x+4 a-9$, find the value of a.

Sol. Let $p(x)=a x^{3}+x^{2}-2 x+4 a-9$.
As $(x+1)$ is a factor of $p(x)$
$\therefore \quad p(-1)=0 \quad$ [By factor theorem]
$\Rightarrow a(-1)^{3}+(-1)^{2}-2(-1)+4 a-9=0$
$\Rightarrow a(-1)+1+2+4 a-9=0$
$\Rightarrow \quad-a+4 a-6=0$
$\Rightarrow 3 a-6=0 \Rightarrow 3 a=6 \Rightarrow a=2$
23. Factorise:
(i) $x^{2}+9 x+18$
(ii) $6 x^{2}+7 x-3$
(iii) $2 x^{2}-7 x-15$
(iv) $84-2 r-2 r^{2}$

Sol. (i) In order to factorise $x^{2}+9 x+18$, we have to find two numbers p and q such that $p+q=9$ and $p q=18$.
Clearly, $6+3=9$ and $6 \times 3=18$.
So, we write the middle term $9 x$ as $6 x+3 x$.

$$
\begin{aligned}
\therefore \quad x^{2}+9 x+18 & =x^{2}+6 x+3 x+18 \\
& =x(x+6)+3(x+6) \\
& =(x+6)(x+3)
\end{aligned}
$$

(ii) In order to factorise $6 x^{2}+7 x-3$, we have to find two numbers p and q such that $p+q=7$ and $p q=-18$.
Clearly, $9+(-2)=7$ and $9 \times(-2)=-18$.

So, we write the middle term $7 x$ as $9 x+(-2 x)$, i.e., $9 x-2 x$.

$$
\begin{aligned}
\therefore \quad 6 x^{2}+7 x-3 & =6 x^{2}+9 x-2 x-3 \\
& =3 x(2 x+3)-1(2 x+3) \\
& =(2 x+3)(3 x-1)
\end{aligned}
$$

(iii) In order to factorise $2 x^{2}-7 x-15$, we have to find two numbers p and q such that $p+q=-7$ and $p q=-30$.
Clearly, $(-10)+3=-7$ and $(-10) \times 3=-30$.
So, we write the middle term $-7 x$ as $(-10 x)+3 x$.

$$
\begin{aligned}
\therefore \quad 2 x^{2}-7 x-15 & =2 x^{2}-10 x+3 x-15 \\
& =2 x(x-5)+3(x-5) \\
& =(x-5)(2 x+3)
\end{aligned}
$$

(iv) In order to factorise $84-2 r-2 r^{2}$, we have to find two numbers p and q such that $p+q=-2$ and $p q=-168$.
Clearly, $(-14)+12=-2$ and $(-14) \times 12=-168$.
So, we write the middle term $-2 r$ as $(-14 r)+12 r$.

$$
\begin{aligned}
\therefore \quad 84-2 r-2 r^{2} & =-2 r^{2}-2 r+84 \\
& =-2 r^{2}-14 r+12 r+84 \\
& =-2 r(r+7)+12(r+7) \\
& =(r+7)(-2 r+12) \\
& =-2(r+7)(r-6)=-2(r-6)(r+7)
\end{aligned}
$$

24. Factorise:
(i) $2 x^{3}-3 x^{2}-17 x+30$
(ii) $x^{3}-6 x^{2}+11 x-6$
(iii) $x^{3}+x^{2}-4 x-4$
(iv) $3 x^{3}-x^{2}-3 x+1$

Sol. (i) Let $f(x)=2 x^{3}-3 x^{2}-17 x+30$ be the given polynomial. The factors of the constant term +30 are $\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30$. The factor of coefficient of x^{3} is 2 . Hence, possible rational roots of $f(x)$ are:

$$
\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2} .
$$

We have

$$
\begin{aligned}
f(2) & =2(2)^{3}-3(2)^{2}-17(2)+30 \\
& =2(8)-3(4)-17(2)+30 \\
& =16-12-34+30=0
\end{aligned}
$$

and

$$
\begin{aligned}
f(-3) & =2(-3)^{3}-3(-3)^{2}-17(-3)+30 \\
& =2(-27)-3(9)-17(-3)+30 \\
& =-54-27+51+30=0
\end{aligned}
$$

So, $(x-2)$ and $(x+3)$ are factors of $f(x)$.
$\Rightarrow \quad x^{2}+x-6$ is a factor of $f(x)$.
Let us now divide $f(x)=2 x^{3}-3 x^{2}-17 x+30$ by $x^{2}+x-6$ to get the other factors of $f(x)$.
By long division, we have

$$
\begin{gathered}
x ^ { 2 } + x - 6 \longdiv { \begin{array} { l }
{ 2 x ^ { 3 } - 3 x ^ { 2 } - 1 7 x + 3 0 } \\
{ 2 x ^ { 3 } + 2 x ^ { 2 } - 1 2 x }
\end{array} } \begin{array} { c }
{ - 5 x - 5 } \\
{ \frac { - 5 x ^ { 2 } - 5 x + 3 0 } { - 5 x ^ { 2 } - 5 x + 3 0 } + } \\
{ + }
\end{array}
\end{gathered}
$$

$\therefore 2 x^{3}-3 x^{2}-17 x+30=\left(x^{2}+x-6\right)(2 x-5)$
$\Rightarrow 2 x^{3}-3 x^{2}-17 x+30=(x-2)(x+3)(2 x-5)$
Hence, $2 x^{3}-3 x^{2}-17 x+30=(x-2)(x+3)(2 x-5)$
(ii) Let $f(x)=x^{3}-6 x^{2}+11 x-6$ be the given polynomial. The factors of the constant term -6 are $\pm 1, \pm 2, \pm 3$ and ± 6.
We have,
$f(1)=(1)^{3}-6(1)^{2}+11(1)-6=1-6+11-6=0$
and,
$f(2)=(2)^{3}-6(2)^{2}+11(2)-6=8-24+22-6=0$
So, $(x-1)$ and $(x-2)$ are factors of $f(x)$.
$\Rightarrow \quad(x-1)(x-2)$ is also a factor of $f(x)$.
$\Rightarrow \quad x^{2}-3 x+2$ is a factor of $f(x)$.
Let us now divide $f(x)=x^{3}-6 x^{2}+11 x-6$ by $x^{2}-3 x+2$ to get the other factors of $f(x)$.
By long division, we have

$$
\begin{aligned}
& x^{2}-3 x+2 \begin{array}{l}
x^{3}-6 x^{2}+11 x-6 \\
x^{3}-3 x^{2}+2 x
\end{array} \\
& \frac{-3 x^{2}+9 x-6}{} \\
& \frac{-3 x^{2}+9 x-6}{}+\quad x-3 \\
& \hline
\end{aligned}
$$

0
$\therefore x^{3}-6 x^{2}+11 x-6=\left(x^{2}-3 x+2\right)(x-3)$
$\Rightarrow x^{3}-6 x^{2}+11 x-6=(x-1)(x-2)(x-3)$
Hence, $x^{3}-6 x^{2}+11 x-6=(x-1)(x-2)(x-3)$
(iii) Let $f(x)=x^{3}+x^{2}-4 x-4$ be the given polynomial. The factors of the constant term -4 are $\pm 1, \pm 2, \pm 4$.
We have,

$$
f(-1)=(-1)^{3}+(-1)^{2}-4(-1)-4=-1+1+4-4=0
$$

and,

$$
f(2)=(2)^{3}+(2)^{2}-4(2)-4=8+4-8-4=0
$$

So, $(x+1)$ and $(x-2)$ are factors of $f(x)$.
$\Rightarrow \quad(x+1)(x-2)$ is also a factor of $f(x)$.
$\Rightarrow \quad x^{2}-x-2$ is a factor of $f(x)$.
Let us now divide $f(x)=x^{3}+x^{2}-4 x-4$ by $x^{2}-x-2$ to get the other factors of $f(x)$.
By long division, we have

$$
\begin{gathered}
x ^ { 2 } - x - 2 \longdiv { \begin{array} { l }
{ x ^ { 3 } + x ^ { 2 } - 4 x - 4 } \\
{ x ^ { 3 } - x ^ { 2 } + 2 x }
\end{array} } \\
\frac{-\quad++2}{2 x^{2}-2 x-4} \\
-2 x^{2}-2 x-4 \\
-\quad x+2
\end{gathered}
$$

$\therefore x^{3}+x^{2}-4 x-4=\left(x^{2}-x-2\right)(x+2)$
$\Rightarrow x^{3}+x^{2}-4 x-4=(x+1)(x-2)(x+2)$
Hence, $x^{3}+x^{2}-4 x-4=(x-2)(x+1)(x+2)$
(iv) Let $f(x)=3 x^{3}-x^{2}-3 x+1$ be the given polynomial. The factors of the constant term +1 are ± 1. The factor of coefficient of x^{3} is 3 . Hence,
possible rational roots of $f(x)$ are: $\pm \frac{1}{3}$.
We have,

$$
f(1)=3(1)^{3}-(1)^{2}-3(1)+1=3-1-3+1=0
$$

and

$$
f(-1)=3(-1)^{3}-(-1)^{2}-3(-1)+1=-3-1+3+1=0
$$

So, $(x-1)$ and $(x+1)$ are factors of $f(x)$.
$\Rightarrow \quad(x-1)(x+1)$ is also a factor of $f(x)$.
$\Rightarrow \quad x^{2}-1$ is a factor of $f(x)$.
Let us now divide $f(x)=3 x^{3}-x^{2}-3 x+1$ by $x^{2}-1$ to get the other factors of $f(x)$.
By long division, we have

$\therefore \quad 3 x^{3}-x^{2}-3 x+1=\left(x^{2}-1\right)(3 x-1)$
$\Rightarrow \quad 3 x^{3}-x^{2}-3 x+1=(x-1)(x+1)(3 x-1)$
Hence, $\quad 3 x^{3}-x^{2}-3 x+1=(x-1)(x+1)(3 x-1)$
25. Using suitable identity, evaluate the following:
(i) 103^{3}
(ii) 101×102
(iii) 999^{2}

Sol. (i) $103^{3}=(100+3)^{3}$
Now, using identity $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$, we have

$$
\begin{aligned}
(100+3)^{3} & =(100)^{3}+(3)^{3}+3(100)(3)(100+3) \\
& =1000000+27+900(100+3) \\
& =1000000+27+90000+2700 \\
& =1092727
\end{aligned}
$$

(ii) $101 \times 102=(100+1)(100+2)$

Now, using identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$, we have $(100+1)(100+2)=(100)^{2}+(1+2) 100+(1)(2)$

$$
\begin{aligned}
& =10000+(3) 100+2=10000+300+2 \\
& =10302
\end{aligned}
$$

(iii) $\quad(999)^{2}=(1000-1)^{2}=(1000)^{2}-2 \times(1000) \times 1+1^{2}$

$$
\begin{aligned}
& =1000000-2000+1 \\
& =998001
\end{aligned}
$$

26. Factorise the following:
(i) $4 x^{2}+20 x+25$
(ii) $9 y^{2}-66 y z+121 z^{2}$
(iii) $\left(2 x+\frac{1}{3}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}$

Sol. (i) We have,

$$
\begin{aligned}
4 x^{2}+20 x+25 & =(2 x)^{2}+2(2 x)(5)+(5)^{2} \\
& =(2 x+5)^{2} \\
& =(2 x+5)(2 x+5)
\end{aligned} \quad\left[\because a^{2}+2 a b+b^{2}=(a+b)^{2}\right]
$$

(ii) We have,

$$
\begin{aligned}
9 y^{2}-66 y z+121 z^{2} & =(-3 y)^{2}+2(-3 y)(11 z)+(11 z)^{2} \\
& =(-3 y+11 z)^{2} \quad \quad\left[\because a^{2}+2 a b+b^{2}=(a+b)^{2}\right] \\
& =(-3 y+11 z)(-3 y+11 z) \\
& =(3 y-11 z)(3 y-11 z)
\end{aligned}
$$

(iii) $\left(2 x+\frac{1}{3}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}$

Using identity $a^{2}-b^{2}=(a+b)(a-b)$

$$
\begin{aligned}
& =\left[\left(2 x+\frac{1}{3}\right)+\left(x-\frac{1}{2}\right)\right]\left[\left(2 x+\frac{1}{3}\right)-\left(x-\frac{1}{2}\right)\right] \\
& =\left(2 x+\frac{1}{3}+x-\frac{1}{2}\right)\left(2 x+\frac{1}{3}-x+\frac{1}{2}\right)=\left(3 x-\frac{1}{6}\right)\left(x+\frac{5}{6}\right)
\end{aligned}
$$

27. Factorise the following:
(i) $9 x^{2}-12 x+3$
(ii) $9 x^{2}-12 x+4$

Sol. (i) $\quad 9 x^{2}-12 x+3=9 x^{2}-9 x-3 x+3$

$$
\begin{aligned}
& =9 x(x-1)-3(x-1) \\
& =(9 x-3)(x-1) \\
& =3(3 x-1)(x-1)
\end{aligned}
$$

(ii) We have,

$$
\begin{aligned}
9 x^{2}-12 x+4 & =(3 x)^{2}-2(3 x)(2)+(2)^{2} \\
& =(3 x-2)^{2} \quad\left[\because a^{2}-2 a b+b^{2}=(a-b)^{2}\right] \\
& =(3 x-2)(3 x-2)
\end{aligned}
$$

28. Expand the following:
(i) $(4 a-b+2 c)^{2}$
(ii) $(3 a-5 b-c)^{2}$
(iii) $(-x+2 y-3 z)^{2}$

Sol. (i) We have,

$$
\begin{gathered}
(4 a-b+2 c)^{2}=(4 a)^{2}+(-b)^{2}+(2 c)^{2}+2(4 a)(-b)+2(-b)(2 c)+2(2 c)(4 a) \\
{\left[\because a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a=(a+b+c)^{2}\right]} \\
=16 a^{2}+b^{2}+4 c^{2}-8 a b-4 b c+16 c a
\end{gathered}
$$

(ii) We have,

$$
\begin{aligned}
(3 a-5 b-c)^{2}= & (3 a)^{2}+(-5 b)^{2}+(-c)^{2}+2(3 a)(-5 b) \\
& +2(-5 b)(-c)+2(-c)(3 a) \\
& {\left[\because a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a=(a+b+c)^{2}\right] } \\
= & 9 a^{2}+25 b^{2}+c^{2}-30 a b+10 b c-6 c a .
\end{aligned}
$$

(iii) $\quad(-x+2 y-3 z)^{2}=\{(-x)+2 y+(-3 z)\}^{2}$

$$
=(-x)^{2}+(2 y)^{2}+(-3 z)^{2}+2(-x)(2 y)+2(2 y)(-3 z)
$$

$$
+2(-3 z)(-x)
$$

$$
=x^{2}+4 y^{2}+9 z^{2}-4 x y-12 y z+6 z x
$$

29. Factorise the following:
(i) $9 x^{2}+4 y^{2}+16 z^{2}+12 x y-16 y z-24 x z$
(ii) $25 x^{2}+16 y^{2}+4 z^{2}-40 x y+16 y z-20 x z$
(iii) $16 x^{2}+4 y^{2}+9 z^{2}-16 x y-12 y z+24 x z$

Sol. (i) We have,

$$
\begin{aligned}
& 9 x^{2}+4 y^{2}+16 z^{2}+12 x y-16 y z-24 x z \\
& =(3 x)^{2}+(2 y)^{2}+(-4 z)^{2}+2(3 x)(2 y)+2(2 y)(-4 z)+2(-4 z)(3 x) \\
& =\{3 x+2 y+(-4 z)\}^{2} \quad\left[\because a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a=(a+b+c)^{2}\right] \\
& =(3 x+2 y-4 z)^{2}=(3 x+2 y-4 z)(3 x+2 y-4 z)
\end{aligned}
$$

(ii) $25 x^{2}+16 y^{2}+4 z^{2}-40 x y+16 y z-20 x z$

$$
\begin{aligned}
= & (-5 \mathrm{x})^{2}+(4 y)^{2}+(2 \mathrm{z})^{2}+2 \cdot(-5 \mathrm{x})(4 \mathrm{y}) \\
& +2(4 \mathrm{y})(2 \mathrm{z})+2(z)(-5 \mathrm{x}) \\
= & (-5 \mathrm{x}+4 \mathrm{y}+2 \mathrm{z})^{2}
\end{aligned}
$$

(iii) We have,

$$
\begin{aligned}
16 x^{2} & +4 y^{2}+9 z^{2}-16 x y-12 y z+24 x z \\
& =(4 x)^{2}+(-2 y)^{2}+(3 z)^{2}+2(4 x)(-2 y)+2(-2 y)(3 z)+2(3)(4 x) \\
& =\{4 x+(-2 y)+3 z\}^{2} \quad\left[\because a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a\right. \\
& \left.=(4 x-2 y+3 z)^{2} \quad=(a+b+c)^{2}\right] \\
& =(4 x-2 y+3 z)(4 x-2 y+3 z)
\end{aligned}
$$

30. If $a+b+c=9$ andab $+b c+c a=26$, finda ${ }^{2}+b^{2}+c^{2}$.

Sol. We know that

$$
\begin{aligned}
& (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a \\
& \Rightarrow \quad(a+b+c)^{2}=\left(a^{2}+b^{2}+c^{2}\right)+2(a b+b c+c a) \\
& \Rightarrow \quad 9^{2}=\left(a^{2}+b^{2}+c^{2}\right)+2(26)
\end{aligned}
$$

[Putting the values of $\mathrm{a}+\mathrm{b}+\mathrm{c}$ and $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}$]
$\Rightarrow \quad 81=\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)+52$
$\Rightarrow \quad a^{2}+b^{2}+c^{2}=81-52=29$
31. Expand the following:
(i) $(3 a-2 b)^{3}$
(ii) $\left(\frac{1}{x}+\frac{y}{3}\right)^{3}$
(iii) $\left(4-\frac{1}{3 \mathrm{x}}\right)^{3}$

Sol. (i) We have

$$
\begin{aligned}
(3 a-2 b)^{3}= & (3 a)^{3}-(2 b)^{3}-3(3 a)(2 b)(3 a-2 b) \\
& \quad\left[\because(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)\right] \\
= & 27 a^{3}-8 b^{3}-18 a b(3 a-2 b) \\
= & 27 a^{3}-8 b^{3}-54 a^{2} b+36 a b^{2}
\end{aligned}
$$

$$
\text { (ii) } \because \quad(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)
$$

$$
\begin{aligned}
\therefore \quad\left(\frac{1}{x}+\frac{y}{3}\right)^{3} & =\left(\frac{1}{x}\right)^{33}+\left(\frac{y}{3}\right)+3 \times \frac{11}{x x} \times \frac{y y}{33}(-+-) \\
& =\frac{11}{x^{3}}+\frac{y^{3} y}{273}+-(-+-) \\
& =\frac{1}{x x}+\frac{y^{3} y}{273}+\frac{2}{2}+\frac{2}{x}=\frac{1}{x x^{32}}+\frac{y y y}{}+\frac{23}{387}+-
\end{aligned}
$$

(iii) We have,

$$
\begin{aligned}
\left(4-\frac{1}{3 x}\right)^{3}= & (4)^{3}-\left(\frac{1}{3 x}\right)^{3}-3(4)\left(\frac{1}{3 x}\right)\left(4-\frac{1}{3 x}\right) \\
& {\left[\because(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)\right] } \\
= & 64-\frac{1}{27 x^{3}}-\frac{4}{x}\left(4-\frac{1}{3 x}\right) \\
= & 64-\frac{1}{27 x^{3}}-\frac{16}{x}+\frac{4}{3 x^{2}}
\end{aligned}
$$

32. Factorise the following:
(i) $1-64 a^{3}-12 a+48 a^{2}$
(ii) $8 p^{3}+\frac{12}{5} p^{2}+\frac{6}{25} p+\frac{1}{125}$

Sol. (i) We have,

$$
\begin{aligned}
1-64 a^{3}-12 a+48 a^{2} & =(1)^{3}-(4 a)^{3}-3(1)(4 a)(1-4 a) \\
& =(1-4 a)^{3}\left[\because a^{3}-b^{3}-3 a b(a-b)=(a-b)^{3}\right] \\
& =(1-4 a)(1-4 a)(1-4 a)
\end{aligned}
$$

(ii) $8 p^{3}+\frac{12}{5} p^{2}+\frac{6}{25} p+\frac{1}{125}$

$$
\begin{aligned}
& =(2 p)^{3}+3 \times(2 p)^{2} \times \frac{1}{5}+3 \times(2 p) \times\left(\frac{1}{5}\right)^{2}+\left(\frac{1}{5}\right)^{3} \\
& =(2 p)^{3}+\left(\frac{1}{5}\right)^{3}+3 \times(2 p) \times \frac{1}{5}\left[2 p+\frac{1}{5}\right]
\end{aligned}
$$

Now, using $a^{3}+b^{3}+3 a b(a+b)=(a+b)^{3}$

$$
=\left(2 p+\frac{1}{5}\right)^{3}=\left(2 p+\frac{1}{5}\right)\left(2 p+\frac{1}{5}\right)\left(2 p+\frac{1}{5}\right)
$$

33. Find the following products:

$$
\text { (i) }\left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right)(i i)\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)
$$

Sol. (i) We have,

$$
\begin{aligned}
& \left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right)=\left(\frac{x}{2}+2 y\right)\left\{\left(\frac{x}{2}\right)^{2}-\left(\frac{x}{2}\right)(2 y)+(2 y)^{2}\right\} \\
& =\left(\frac{x}{2}\right)^{3}+(2 y)^{3} \\
& =\frac{x^{3}}{8}+8 y^{3}
\end{aligned}
$$

(ii) We have,

$$
\begin{aligned}
\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)= & \left(x^{2}-1\right)\left\{\left(x^{2}\right)^{2}+\left(x^{2}\right)(1)+(1)^{2}\right\} \\
= & \left(x^{2}\right)^{3}-(1)^{3} \\
& \quad\left[\because(a-b)\left(a^{2}+a b+b^{2}\right)=a^{3}-b^{3}\right] \\
= & x^{6}-1
\end{aligned}
$$

34. Factorise:
(i) $1+64 x^{3}$
(ii) $a^{3}-2 \sqrt{2} b^{3}$

Sol. (i) We have,

$$
\begin{aligned}
1+64 x^{3}= & (1)^{3}+(4 x)^{3} \\
& =(1+4 x)\left\{(1)^{2}-(1)(4 x)+(4 x)^{2}\right\} \\
& \quad\left[\because a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right] \\
& =(1+4 x)\left(1-4 x+16 x^{2}\right) \\
& =(1+4 x)\left(16 x^{2}-4 x+1\right) \\
& =(4 x+1)\left(16 x^{2}-4 x+1\right)
\end{aligned}
$$

(ii) We have,

$$
\begin{aligned}
a^{3}-2 \sqrt{2} b^{3}= & (a)^{3}-(\sqrt{2} b)^{3} \\
= & (a-\sqrt{2} b)\left\{(a)^{2}+(a)(\sqrt{2} b)+(\sqrt{2} b)^{2}\right\} \\
& \quad\left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right] \\
= & (a-\sqrt{2} b)\left(a^{2}+\sqrt{2} a b+2 b^{2}\right)
\end{aligned}
$$

35. Find the following product:

$$
(2 x-y+3 z)\left(4 x^{2}+y^{2}+9 z^{2}+2 x y+3 y z-6 x z\right)
$$

Sol. We have,

$$
\begin{aligned}
& (2 x-y+3 z)\left(4 x^{2}+y^{2}+9 z^{2}+2 x y+3 y z-6 x z\right) \\
& =\{2 x+(-y)+3 z\}\left\{(2 x)^{2}+(-y)^{2}+(3 z)^{2}-(2 x)(-y)-(-y)(3 z)-(3 z)(2 x)\right\} \\
& =(2 x)^{3}+(-y)^{3}+(3 z)^{3}-3(2 x)(-y)(3 z) \\
& \left.\quad \quad \quad \because(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=a^{3}+b^{3}+c^{3}-3 a b c\right] \\
& =8 x^{3}-y^{3}+27 z^{3}+18 x y z
\end{aligned}
$$

36. Factorise:
(i) $a^{3}-8 b^{3}-64 c^{3}-24 a b c$
(ii) $2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$

Sol. (i) We have,

$$
\begin{aligned}
& a^{3}-8 b^{3}-64 c^{3}- 24 a b c \\
&=\left\{(a)^{3}+(-2 b)^{3}+(-4 c)^{3}-3(a)(-2 b)(-4 c)\right\} \\
&=\{a+(-2 b)+(-4 c)\}\left\{a^{2}+(-2 b)^{2}+(-4 c)^{2}-a(-2 b)\right. \\
&\quad-(-2 b)(-4 c)-(-4 c) a\}
\end{aligned}
$$

$$
\begin{gathered}
{\left[\because a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)\right]} \\
=(a-2 b-4 c)\left(a^{2}+4 b^{2}+16 c^{2}+2 a b-8 b c+4 c a\right)
\end{gathered}
$$

(ii) We have,

$$
\begin{aligned}
2 \sqrt{2} a^{3}+ & 8 b^{3}-27 c^{3}+18 \sqrt{2} a b c \\
= & \left\{(\sqrt{2} a)^{3}+(2 b)^{3}+(-3 c)^{3}-3(\sqrt{2} a)(2 b)(-3 c)\right\} \\
= & \{\sqrt{2} a+2 b+(-3 c)\}\left\{(\sqrt{2} a)^{2}+(2 b)^{2}+(-3 c)^{2}-(\sqrt{2} a)(2 b)\right. \\
& -(2 b)(-3 c)-(-3 c)(\sqrt{2} a)\} \\
= & (\sqrt{2} a+2 b-3 c)\left(2 a^{2}+4 b^{2}+9 c^{2}-2 \sqrt{2} a b+6 b c+3 \sqrt{2} c a\right)
\end{aligned}
$$

37. Without actually calculating the cubes, find the value of:

$$
\text { (i) }\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{3}\right)^{3}-\left(\frac{5}{6}\right)^{3} \quad \text { (ii) }(0.2)^{3}-(0.3)^{3}+(0.1)^{3}
$$

Sol. (i) Let $a=\frac{1}{2}, b=\frac{1}{3}, c=-\frac{5}{6}$

$$
\begin{aligned}
\therefore \quad a+b+c & =\frac{1}{2}+\frac{1}{3}-\frac{5}{6} \\
& =\frac{3+2-5}{6}=\frac{0}{6}=0 \\
\Rightarrow \quad a^{3}+b^{3}+c^{3} & =3 a b c \\
\therefore \quad\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{3}\right)^{3}-\left(\frac{5}{6}\right)^{3} & =\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{3}\right)^{3}+\left(-\frac{5}{6}\right)^{3} \\
& =3 \times \frac{1}{2} \times \frac{1}{3}\left(-\frac{5}{6}\right)=-\frac{5}{12}
\end{aligned}
$$

(ii) We have,

$$
\text { Hence, }(0.2)^{3}+(-0.3)^{3}+(0.1)^{3}=-0.018
$$

$$
\begin{aligned}
& (0.2)^{3}-(0.3)^{3}+(0.1)^{3}=(0.2)^{3}+(-0.3)^{3}+(0.1)^{3} \\
& \text { Let } a=0.2, b=-0.3 \text { and } c=0.1 \text {. Then, } \\
& a+b+c=0.2+(-0.3)+0.1 \\
& =0.2-0.3+0.1=0 \\
& \because \quad a+b+c=0 \\
& \therefore a^{3}+b^{3}+c^{3}=3 a b c \\
& \Rightarrow \quad(0.2)^{3}+(-0.3)^{3}+(0.1)^{3}=3(0.2)(-0.3)(0.1)=-0.018
\end{aligned}
$$

38. Without finding the cubes, factorise

$$
(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}
$$

Sol. Let $x-2 y=a, 2 y-3 z=b$ and $3 z-x=\mathrm{c}$

$$
\begin{array}{ll}
\therefore \quad a+b+c & =x-2 y+2 y-3 z+3 z-x=0 \\
\Rightarrow & a^{3}+b^{3}+c^{3}
\end{array}=3 a b c
$$

39. Find the value of
(i) $x^{3}+y^{3}-12 x y+64$, when $x+y=-4$
(ii) $x^{3}+8 y^{3}-36 x y-216$, when $x=2 y+6$

Sol. (i) $x^{3}+y^{3}-12 x y+64=x^{3}+y^{3}+4^{3}-3 x \times y \times 4$

$$
\begin{aligned}
& =(x+y+4)\left(x^{2}+y^{2}+4^{2}-x y-4 y-4 x\right) \\
& \quad[\because x+y=-4] \\
& =(0)\left(x^{2}+y^{2}+4^{2}-x y-4 y-4 x\right)=0
\end{aligned}
$$

(ii) $x^{3}-8 y^{3}-36 x y-216=x^{3}+(-2 y)^{3}+(-6)^{3}-3 x(-2 y)(-6)$

$$
=(x-2 y-6)
$$

$$
\left[x^{2}+(-2 y)^{2}+(-6)^{2}-x(-2 y)-(-2 y)(-6)-(-6) x\right]
$$

$$
=(x-2 y-6)\left(x^{2}+4 y^{2}+36+2 x y-12 y+6 x\right)
$$

$$
=(0)\left(x^{2}+4 y^{2}+36+2 x y-12 y+6 x\right)=0
$$

$$
[\because x=2 y+6]
$$

40. Give possible experiments for the length and breadth of the rectangle whose area is given by $4 a^{2}+4 a-3$.
Sol. Area : $4 a^{2}+4 a-3$
Using the method of splitting the middle term, we first find two numbers whose sum is +4 and product is $4 \times(-3)=-12$.
Now, $+6-2=+4$ and $(+6) \times(-2)=-12$
We split the middle term $4 a$ as $4 a=+6 a-2 a$,
so that

$$
\begin{aligned}
4 a^{2}+4 a-3 & =4 a^{2}+6 a-2 a-3 \\
& =2 a(2 a+3)-1(2 a+3) \\
& =(2 a-1)(2 a+3)
\end{aligned}
$$

Now, area of rectangle $=4 a^{2}+4 a-3$
Also, area of rectangle $=$ length \times breadth and $4 a^{2}+4 a-3=(2 a-1)(2 a+3)$
So, the possible expressions for the length and breadth of the rectangle are length $=(2 a-1)$ and breadth $=(2 a+3)$ or, length $=(2 a+3)$ and breadth $=(2 a-1)$.

EXERCISE 2.4

1. If the polynomials $a z^{3}+4 z^{2}+3 z-4$ and $z^{3}-4 z+a$ leave the same remainder when divided by $z-3$, find the value of a.
Sol. Let $p(z)=a z^{3}+4 z^{2}+3 z-4$
and

$$
q(z)=z^{3}-4 z+a
$$

As these two polynomials leave the same remainder, when divided by $z-3$, then $p(3)=q(3)$.
$\therefore \quad p(3)=a(3)^{3}+4(3)^{2}+3(3)-4$

$$
=27 a+36+9-4
$$

or

$$
p(3)=27 a+41
$$

and

$$
\begin{aligned}
q(3) & =(3)^{3}-4(3)+a \\
& =27-12+a=15+a
\end{aligned}
$$

Now, $\quad p(3)=q(3)$
$\Rightarrow \quad 27 a+41=15+a$
$\Rightarrow \quad 26 a=-26 ; a=-1$
Hence, the required value of $a=-1$.
2. The polynomial $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ when divided by $x+1$ leaves remainder 19. Also, find the remainder when $p(x)$ is divided by $x+2$.
Sol. We know that if $p(x)$ is divided by $x+a$, then the remainder $=p(-a)$.
Now, $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ is divided by $x+1$, then the remainder $=p(-1)$
Now,

$$
\begin{aligned}
p(-1) & =(-1)^{4}-2(-1)^{3}+3(-1)^{2}-a(-1)+3 a-7 \\
& =1-2(-1)+3(1)+a+3 a-7 \\
& =1+2+3+4 a-7 \\
& =-1+4 a
\end{aligned}
$$

Also, remainder $=19$

$$
\begin{aligned}
\therefore & & -1+4 a & =19 \\
\Rightarrow & & 4 a & =20 ; a=20 \div 4=5
\end{aligned}
$$

Again, when $p(x)$ is divided by $x+2$, then

$$
\begin{aligned}
\text { remainder } & =p(-2)=(-2)^{4}-2(-2)^{3}+3(-2)^{2}-a(-2)+3 a-7 \\
& =16+16+12+2 a+3 a-7 \\
& =37+5 a \\
& =37+5(5)=37+25=62
\end{aligned}
$$

3. If both $(x-2)$ and $\left(x-\frac{1}{2}\right)$ are factors of $p x^{2}+5 x+r$, show that $p=r$.

Sol. Let $p(x)=p x^{2}+5 x+r$.
As $(x-2)$ is a factor of $p(x)$
So, $\quad p(2)=0 \Rightarrow p(2)^{2}+5(2)+r=0$
$\Rightarrow \quad 4 p+10+r=0$
Again, $\left(x-\frac{1}{2}\right)$ is a factor of $p(x)$,
$\therefore \quad p\left(\frac{1}{2}\right)=0$
Now, $\quad p\left(\frac{1}{2}\right)=p\left(\frac{1}{2}\right)^{2}+5\left(\frac{1}{2}\right)+r$
$=\frac{1}{4} p+\frac{5}{2}+r$
$\therefore \quad p\left(\frac{1}{2}\right)=0 \Rightarrow \frac{1}{4} p+\frac{5}{2}+r=0$
From (1), we have $4 p+r=-10$
From (2), we have $p+10+4 r=0$

$$
\left.\begin{array}{rlrl}
\Rightarrow & & p+4 r & =-10 \\
& \therefore & & 4 p+r
\end{array}\right)
$$

Hence, proved.
4. Without actual division, prove that $2 x^{4}-5 x^{3}+2 x^{2}-x+2$ is divisible by $x^{2}-3 x+2$.

Sol. We have,

$$
\begin{aligned}
x^{2}-3 x+2 & =x^{2}-x-2 x+2 \\
& =x(x-1)-2(x-1) \\
& =(x-1)(x-2)
\end{aligned}
$$

Let $p(x)=2 x^{4}-5 x^{3}+2 x^{2}-x+2$
Now, $\quad p(1)=2(1)^{4}-5(1)^{3}+2(1)^{2}-1+2=2-5+2-1+2=0$
Therefore, $(x-1)$ divides $p(x)$
and $\quad p(2)=2(2)^{4}-5(2)^{3}+2(2)^{2}-2+2$

$$
=32-40+8-2+2=0
$$

Therefore, $(x-2)$ divides $p(x)$.
So, $\quad(x-1)(x-2)=x^{2}-3 x+2$ divides $2 x^{4}-5 x^{3}+2 x^{2}-x+2$
5. Simplify $(2 x-5 y)^{3}-(2 x+5 y)^{3}$.

Sol. We have,

$$
\begin{aligned}
& (2 x-5 y)^{3}-(2 x+5 y)^{3} \\
& =\{(2 x-5 y)-(2 x+5 y)\}\left\{(2 x-5 y)^{2}+(2 x-5 y)(2 x+5 y)+(2 x+5 y)^{2}\right\} \\
& \quad\left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =(2 x-5 y-2 x-5 y)\left(4 x^{2}+25 y^{2}-20 x y+4 x^{2}-25 y^{2}+4 x^{2}+25 y^{2}+20 x y\right) \\
& =(-10 y)\left(2 x^{2}+25 y^{2}\right) \\
& =-120 x^{2} y-250 y^{3}
\end{aligned}
$$

6. Multiply $x^{2}+4 y^{2}+z^{2}+2 x y+x z-2 y z$ by $(-z+x-2 y)$.

Sol. We have,
$(-z+x-2 y)\left(x^{2}+4 y^{2}+z^{2}+2 x y+x z-2 y z\right)$
$=\{x+(-2 y)+(-z)\}\left\{(x)^{2}+(-2 y)^{2}+(-z)^{2}-(x)(-2 y)-(-2 y)(-z)-(-z)(x)\right\}$
$=x^{3}+(-2 y)^{3}+(-z)^{3}-3(x)(-2 y)(-z)$
$\left[\because(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=a^{3}+b^{3}+c^{3}-3 a b c\right]$
$=x^{3}-8 y^{3}-z^{3}-6 x y z$
7. If a, b, c are all non-zero and $a+b+c=0$, prove that
$\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}=3$.
Sol. We have a, b, c are all non-zero and $a+b+c=0$, therefore

$$
a^{3}+b^{3}+c^{3}=3 a b c
$$

\quad Now, $\quad \frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}=\frac{a^{3}+b^{3}+c^{3}}{a b c}=\frac{3 a b c}{a b c}=3$
8. If $a+b+c=5$ and $a b+b c+c a=10$, then prove that $a^{3}+b^{3}+c^{3}-3 a b c=-25$

Sol. We know that,

$$
\begin{aligned}
a^{3}+b^{3}+c^{3}-3 a b c & =(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \\
& =(a+b+c)\left[a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right] \\
& =5\left\{a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right\} \\
& =5\left(a^{2}+b^{2}+c^{2}-10\right)
\end{aligned}
$$

Now, $a+b+c=5$
Squaring both sides, we get

$$
\begin{array}{rlrl}
& & (a+b+c)^{2} & =5^{2} \\
\Rightarrow & a^{2}+b^{2}+c^{2}+2(a b+b c+c a) & =25 \\
\therefore & & a^{2}+b^{2}+c^{2}+2(10) & =25 \\
\Rightarrow & a^{2}+b^{2}+c^{2}=25-20 & =5 \\
& \text { Now, } & a^{3}+b^{3}+c^{3}-3 a b c & =5\left(a^{2}+b^{2}+c^{2}-10\right) \\
& & =5(5-10)=5(-5)=-25
\end{array}
$$

Hence, proved.
9. Prove that $(a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+b)(b+c)(c+a)$

Sol.

$$
\begin{aligned}
(a+b+c)^{3}= & {[a+(b+c)]^{3} } \\
= & a^{3}+3 a^{2}(b+c)+3 a(b+c)^{2}+(b+c)^{3} \\
= & a^{3}+3 a^{2} b+3 a^{2} c+3 a\left(b^{2}+2 b c+c^{2}\right) \\
& +\left(b^{3}+3 b^{2} c+3 b c^{2}+c^{3}\right) \\
= & a^{3}+3 a^{2} b+3 a^{2} c+3 a b^{2}+6 a b c+3 a c^{2} \\
& +b^{3}+3 b^{2} c+3 b c^{2}+c^{3} \\
= & a^{3}+b^{3}+c^{3}+3 a^{2} b+3 a^{2} c+3 b^{2} c+3 b^{2} a \\
& +3 c^{2} a+3 c^{2} b+6 a b c \\
= & a^{3}+b^{3}+c^{3}+3 a^{2}(b+c)+3 b^{2}(c+a) \\
& +3 c^{2}(a+b)+6 a b c
\end{aligned}
$$

Hence, above result can be put in the form

$$
(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)
$$

$$
\therefore(a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+b)(b+c)(c+a)
$$

