EXERCISE 6.1

1. In the given figure, if $\mathrm{AB}\|\mathrm{CD}\| \mathrm{EF}, \mathrm{PQ} \| \mathrm{RS}, \angle \mathrm{RQD}=25^{\circ}$ and $\angle \mathrm{CQP}=60^{\circ}$, then $\angle \mathrm{QRS}$ is equal to
(a) 85°
(b) 135°
(c) 145°
(d) 110°

Sol. We have $P Q \| R$. Produce $P Q$ to M.

$$
\begin{array}{rlrl}
& & \angle \mathrm{CQP} & =\angle \mathrm{MQD} \\
\therefore & & 60^{\circ} & =\angle 1+25^{\circ} \\
\Rightarrow & \angle 1 & =35^{\circ}
\end{array}
$$

Now, $\mathrm{QM} \mid \mathrm{RS}$ and QR cuts them.

$$
\angle \mathrm{ARQ}=\angle \mathrm{RQD}=25^{\circ}
$$

$\therefore \quad \angle 1+(\angle \mathrm{ARQ}+\angle \mathrm{ARS})=180^{\circ}$
$\Rightarrow \quad 35^{\circ}+\left(25^{\circ}+\angle \mathrm{ARS}\right)=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{ARS}=180^{\circ}-60^{\circ}=120^{\circ}$
$\therefore \quad \angle \mathrm{QRS}=\angle \mathrm{ARQ}+\angle \mathrm{ARS}=25^{\circ}+120^{\circ}=145^{\circ}$
Hence, (c) is the correct answer.
2. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is
(a) an isosceles triangle
(b) an obtuse triangle
(c) an equilateral triangle
(d) a right triangle

Sol. Let the angles of $\triangle \mathrm{ABC}$ be $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$.
Given that $\angle \mathrm{A}=\angle \mathrm{B}+\angle \mathrm{C}$

But, in any $\triangle \mathrm{ABC}, \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
[Angles sum property of triangle]
From equations (1) and (2), we get

$$
\begin{array}{rlrl}
& \angle \mathrm{A}+\angle \mathrm{A} & =180^{\circ} \Rightarrow 2 \angle \mathrm{~A}=180^{\circ} \Rightarrow \angle \mathrm{A}=180^{\circ} / 2=90^{\circ} \\
\mathrm{A} & =90^{\circ}
\end{array}
$$

Hence, the triangle is a right triangle and option (d) is correct.
3. An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angle is
(a) $37 \frac{1^{\circ}}{2}$
(b) $52 \frac{1^{\circ}}{2}$
(c) $72 \frac{1^{\circ}}{2}$
(d) 75°

Sol. An exterior angle of a triangle is 105°.
Let each of the two interior opposite angles be x.
We know that exterior angle of a triangle is equal to the sum of two interior opposite angles.

$$
\begin{array}{ll}
\therefore & 105^{\circ}=x+x \Rightarrow 2 x=105^{\circ} \\
\Rightarrow & x=\frac{1}{2} \times 105^{\circ}=52 \frac{1}{2}
\end{array}
$$

So, each of equal angle is $52 \frac{1}{2}^{\circ}$.
Hence, (b) is the correct answer.
4. The angles of a triangle are in the ratio $5: 3: 7$. The triangle is
(a) an acute angled triangle
(b) an obtuse angled triangle
(c) a right triangle
(d) an isosceles triangle

Sol. Let the angles of the triangle be $5 x, 3 x$ and $7 x$.
As the sum of the angles of a triangle is 180°, then

$$
\begin{array}{rlrl}
& & 5 x+3 x+7 x & =180^{\circ} \\
\Rightarrow \quad & 15 x & =180^{\circ} \Rightarrow x=180^{\circ} \div 15=12^{\circ}
\end{array}
$$

Therefore, the angles of the triangle are $5 \times 12^{\circ}, 3 \times 12^{\circ}$ and $7 \times 12^{\circ}$, i.e., $60^{\circ}, 36^{\circ}$ and 84°
As the measure of each angle of the triangle is less than 90°, so the angles of the triangle are acute angles.
Therefore, the triangle is an acute angled triangle.
Hence, (a) is the correct answer.
5. If one of the angles of a triangle is 130°, then the angle between the bisectors of the other two angles can be
(a) 50°
(b) 65°
(c) 145°
(d) 155°

Sol. In $\triangle \mathrm{ABC}$, we have $\angle \mathrm{A}=130^{\circ}$.
OB and OC are the bisectors of the angles B and C .

Now,

$$
\begin{aligned}
\angle \mathrm{BOC} & =180^{\circ}-(\angle \mathrm{OBC}+\angle \mathrm{OCB}) \\
& =180^{\circ}-25^{\circ}=155^{\circ}
\end{aligned}
$$

Hence, (d) is the correct answer.
6. In the given figure, POQ is a line. The value of x is
(a) 20°
(b) 25°
(c) 30°
(d) 35°

Sol. We have

$$
3 x+4 x+40^{\circ}=180^{\circ}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

$$
7 x+40^{\circ}=180^{\circ} \Rightarrow 7 x=180^{\circ}-40^{\circ}=140^{\circ}
$$

$$
x=140^{\circ} \div 7=20^{\circ}
$$

Hence, (a) is the correct answer.
7. In the given figure, if $\mathrm{OP} \| \mathrm{RS}, \angle \mathrm{OPQ}=110^{\circ}$ and $\angle \mathrm{QRS}=130^{\circ}$, then $\angle \mathrm{PQR}$ is equal to
(a) 40°
(b) 50°
(c) 60°
(d) 70°

Ans. In the given figure, producing OP, which intersect RQ at X.
Since, OP $\| \mathrm{RS}$ and RX is a transversal.

$$
\begin{array}{lrr}
\text { So, } & \angle \mathrm{RXP}=\angle \mathrm{XRS} & \text { [Alternate angles] } \\
\Rightarrow & \angle \mathrm{RXP}=130^{\circ} & \ldots .(1)\left[\because \angle \mathrm{QRS}=130^{\circ}\right]
\end{array}
$$

Now, RQ is a line segment.
So, $\quad \angle \mathrm{PXQ}+\angle \mathrm{RXP}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{PXQ}=180^{\circ}-\angle \mathrm{RXP}=180^{\circ}-130^{\circ}$ [From equation (1)]
$\Rightarrow \quad \angle \mathrm{PXQ}=50^{\circ}$
In $\triangle \mathrm{PQX}, \angle \mathrm{OPQ}$ is an exterior angle.
$\therefore \quad \angle \mathrm{OPQ}=\angle \mathrm{PXQ}+\angle \mathrm{PQX}$
$[\because$ exterior angle $=$ sum of two opposite interior angles]
$\Rightarrow \quad 110^{\circ}=50^{\circ}+\angle \mathrm{PQX}$
$\Rightarrow \quad \angle \mathrm{PQX}=110^{\circ}-50^{\circ}$
$\Rightarrow \quad \angle \mathrm{PQX}=60^{\circ}$
$\therefore \quad \angle \mathrm{PQR}=60^{\circ} \quad[\because \angle \mathrm{PQX}=\angle \mathrm{PQR}]$
Hence, the option (c) is correct.
8. Angles of a triangle are in the ratio $2: 4: 3$. The smallest angle of the triangle is
(a) 60°
(b) 40°
(c) 80°
(d) 20°

Ans. Given that: The ratio of angles of a triangle is $2: 4: 3$.
Let the angles of the triangle be $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$.
$\therefore \angle \mathrm{A}=2 x, \angle \mathrm{~B}=4 x$ and $\angle \mathrm{C}=3 x$
In $\angle \mathrm{ABC}, \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
[\because Sum of angles of a triangle is 180°]
$\Rightarrow 2 x+4 x+3 x=180^{\circ} \Rightarrow 9 x=180^{\circ} \Rightarrow x=180^{\circ} / 9=20^{\circ}$
$\therefore \angle \mathrm{A}=2 x=2 \times 20^{\circ}=40^{\circ}$
$\angle \mathrm{B}=4 x=4 \times 20^{\circ}=80^{\circ}$ and $\angle \mathrm{C}=3 x=3 \times 20^{\circ}=60^{\circ}$
Hence, the smallest angle of a triangle is 40° and option (b) is correct.

EXERCISE 6.2

1. For what value of $x+y$ in the given figure, will ABC be a line? Justify your answer.
Sol. In the given figure, x and y are two adjacent angles. For ABC to be a straight line, the sum of two adjacent angles x and y must
 be 180°.
2. Can a triangle have all angles less than 60° ? Give reason for your answer.

Sol. A triangle cannot have all angles less than 60°. Then, sum of all the angles will be less than 180° whereas sum of all the angles of a triangle is always 180°.
3. Can a triangle have two obtuse angles? Give reason for your answer.

Sol. An angle whose measure is more than 90° but less than 180° is called an obtuse angle.
A triangle cannot have two obtuse angles because the sum of all the angles of it cannot be more than 180°. It is always equal to 180°.
4. How many triangles can be drawn having its angles $45^{\circ}, 64^{\circ}$ and 72° ? Give reason for your answer.
Sol. We cannot draw any triangle having its angles $45^{\circ}, 64^{\circ}$ and 72° because the sum of the angles $\left(45^{\circ}+64^{\circ}+72^{\circ}=181^{\circ}\right)$ cannot be 181°.
5. How many triangles can be drawn having its angles as $53^{\circ}, 64^{\circ}$ and 63° ? Give reason for your answer.
Sol. Sum of these angles $=53^{\circ}+64^{\circ}+63^{\circ}=180^{\circ}$. So, we can draw infinitely many triangles, sum of the angles of every triangle having its angles as $53^{\circ}, 64^{\circ}$ and 63° is 180°.
6. In the given figure, find the value of x for which the lines l and m are parallel.
Sol. If a transversal intersects two parallel lines, then each pair of consecutive interior angles are supplementary. Here, the two given lines l and m are
 parallel.
Angles x and 44°, are consecutive interior angles on the same side of the transversal.
Therefore, $x+44^{\circ}=180^{\circ}$
Hence, $\quad x=180^{\circ}-44^{\circ}=136^{\circ}$
7. Two adjacent angles are equal. Is it necessary that each of these angles will be a right angle? Justify your answer.
Sol. No, each of these angles will be a right angle only when they form a linear pair, i.e., when the non-common arms of the given two adjacent angles are two opposite rays.
8. If one of the angles formed by two intersecting lines is a right angle, what can you say about the other three angles? Give reason for your answer.
Sol. If two lines intersect each other at a point, then four angles are formed. If one of these four angles is a right angle, then each of other three angles will also be a right angle by linear pair axiom.
9. In the given figures, which of the two lines are parallel and why?

Fig (i)

Fig (ii)

Sol. For fig (i), a transversal intersects two lines such that the sum of interior angles on the same side of the transversal is $132^{\circ}+48^{\circ}=180^{\circ}$. Therefore, the lines l and m are parallel.
For fig. (ii), a transversal intersects two lines such that the sum of interior angles on the same side of the transversal is $73^{\circ}+106^{\circ}=179^{\circ}$. Therefore, the lines p and q are not parallel.
10. Two lines l and m are perpendicular to the same line n. Are l and m perpendicular to each other? Given reason for your answer.
Sol. When two lines l and m are perpendicular to the same line n, each of the two corresponding angles formed by these lines l and m with the line n are equal (each is equal to 90°). Hence, the lines l and m are parallel.

EXERCISE 6.3

1. In the given figure, OD is the bisector of $\angle \mathrm{AOC}, \mathrm{OE}$ is the bisector of $\angle \mathrm{BOC}$ and $\mathrm{OD} \perp \mathrm{OE}$. Show that the points A, O and B are collinear.

Sol. Given : In figure, $\mathrm{OD} \perp \mathrm{OE}, \mathrm{OD}$ and OE are the bisectors of $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$.
To prove: Points A, O and B are collinear i.e., AOB is a straight line.
Proof: Since, OD and OE bisect angles $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$ respectively.

$$
\begin{array}{ll}
\therefore & \angle \mathrm{AOC} \tag{1}
\end{array}=2 \angle \mathrm{DOC} \text { And }
$$

On adding equations (1) and (2), we get

$$
\begin{aligned}
& & \angle \mathrm{AOC}+\angle \mathrm{COB} & =2 \angle \mathrm{DOC}+2 \angle \mathrm{COE} \\
& \Rightarrow & \angle \mathrm{AOC}+\angle \mathrm{COB} & =2(\angle \mathrm{DOC}+\angle \mathrm{COE}) \\
& \Rightarrow & \angle \mathrm{AOC}+\angle \mathrm{COB} & =2 \angle \mathrm{DOE} \\
& \Rightarrow & \angle \mathrm{AOC}+\angle \mathrm{COB} & =2 \times 90^{\circ} \\
\Rightarrow & & \angle \mathrm{AOC}+\angle \mathrm{COB} & =180^{\circ} \\
& \therefore & & \angle \mathrm{AOB}
\end{aligned}=180^{\circ} \quad[\therefore \mathrm{OD} \perp \mathrm{OE}]
$$

So, $\angle \mathrm{AOC}+\angle \mathrm{COB}$ are forming linear pair or AOB is a straight line. Hence, points A, O and B are collinear.
2. In the given figure, $\angle 1=60^{\circ}$ and $\angle 6=120^{\circ}$. Show that the lines m and n are parallel.

Sol. We have,

$$
\begin{aligned}
\angle 5+\angle 6 & =180^{\circ} \\
\Rightarrow \quad \angle 5+120^{\circ} & =180^{\circ} \Rightarrow \angle 5=180^{\circ}-120^{\circ}=60^{\circ}
\end{aligned} \quad \Rightarrow \quad \text { Angles of a linear pair] }
$$

Now, $\angle 1=\angle 5 \quad\left[\right.$ Each $=60^{\circ}$]
But, these are corresponding angles.
Therefore, the lines m and n are parallel.
3. AP and BQ are the bisectors of the two alternate interior angles formed by intersection of a transversal t with the parallel lines l and m. See the given figure. Show that $\mathrm{AP} \| \mathrm{BQ}$.
Sol. $\because l \| m$ and t is the transversal

$$
\begin{aligned}
\angle \mathrm{MAB}= & \angle \mathrm{SBA} \\
& {[\mathrm{Alt.} \angle \mathrm{~s}] } \\
\Rightarrow \quad \frac{1}{2} \angle \mathrm{MAB}= & \frac{1}{2} \angle \mathrm{SBA} \Rightarrow \angle 2=\angle 3
\end{aligned}
$$

But, $\angle 2$ and $\angle 3$ are alternate angles. Hence, AP \| BQ.
4. If in the given figure, bisectors AP and BQ of the alternate interior angles are parallel, then show that $l \| m$.
Sol. AP is the bisector of $\angle \mathrm{MAB}$ and BQ is the bisector of $\angle \mathrm{SBA}$. We are given that $\mathrm{AP} \| \mathrm{BQ}$.

$$
\text { As AP } \| \mathrm{BQ} \text {, so } \quad \angle 2=\angle 3
$$

[Alt. $\angle s$]
$[\because \angle 1=\angle 2$ and $\angle 3=\angle 4]$

$$
\Rightarrow \quad \angle \mathrm{MAB}=\angle \mathrm{SBA}
$$

But, these are alternate angles.
Hence, the lines l and m are parallel, i.e., $l \| m$.
5. In the given figure, $\mathrm{BA} \| \mathrm{ED}$ and $\mathrm{BC} \| \mathrm{EF}$. Show that $\angle \mathrm{ABC}=\angle \mathrm{DEF}$. [Hint: Produce DE to intersect BC at P(say)]
Sol. Produce DE to intersect BC at P (say).
$E F \| B C$ and DP is the transversal,

$\therefore \quad \angle \mathrm{DEF}=\angle \mathrm{DPC}$
...(1)[Corres. $\angle s$]
Now, $\mathrm{AB} \| \mathrm{DP}$ and BC is the transversal,
$\therefore \quad \angle \mathrm{DPC}=\angle \mathrm{ABC}$
...(2)[Corres. $\angle s]$
From (1) and (2), we get

$$
\angle \mathrm{ABC}=\angle \mathrm{DEF}
$$

Hence, proved.
6. In the given figure, $\mathrm{BA} \| \mathrm{ED}$ and $\mathrm{BC} \| \mathrm{EF}$. Show that $\angle \mathrm{ABC}+\angle \mathrm{DEF}=180^{\circ}$.

Sol. Produce ED to meet BC at P(say).

Now, EF || BC and EP is the transversal.
$\therefore \quad \angle \mathrm{DEF}+\angle \mathrm{EPC}=180^{\circ}$
Again, $\mathrm{EP} \| \mathrm{AB}$ and BC is the transversal.
$\therefore \quad \angle \mathrm{EPC}=\angle \mathrm{ABC} \quad$...(2) [Corresponding $\angle s$]
From (1) and (2), we get
$\angle \mathrm{DEF}+\angle \mathrm{ABC}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{ABC}+\angle \mathrm{DEF}=180^{\circ}$
Hence, proved.
7. In the given figure, $\mathrm{DE} \| \mathrm{QR}$ and AP and $B P$ are the bisectors of $\angle \mathrm{EAB}$ and $\angle \mathrm{RBA}$, respectively. Find $\angle \mathrm{APB}$.
Sol. $\mathrm{DE} \| \mathrm{QR}$ and the line n is the transversal line.
$\therefore \angle \mathrm{EAB}+\angle \mathrm{RBA}=180^{\circ}$

[\because If a transversal intersects two parallel lines, then each pair of consecutive interior angles are supplementary]
$\Rightarrow \quad \angle \mathrm{PAB}+\angle \mathrm{PBA}=90^{\circ}$
$[\because \mathrm{AP}$ is the bisector of $\angle \mathrm{EAB}$ and BP is the bisector of $\angle \mathrm{RBA}]$
Now, from $\triangle A P B$, we have

$$
\begin{array}{rlrl}
& \angle \mathrm{APB} & =180^{\circ}-(\angle \mathrm{PAB}+\angle \mathrm{PBA}) \\
\Rightarrow & & \angle \mathrm{APB} & =180^{\circ}-90^{\circ}=90^{\circ}
\end{array}
$$

8. The angles of a triangle are in the ratio $2: 3: 4$. Find the angles of the triangle.
Sol. Given : Ratio of angles is $2: 3: 4$.
To find: Angles of triangle.
Proof: The ratio of angles of a triangle is $2: 3: 4$.
Let the angles of a triangle be $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$.
Therefore, $\angle \mathrm{A}=2 x$, then $\angle \mathrm{B}=3 x$ and $\angle \mathrm{C}=4 x$.
In $\triangle \mathrm{ABC}, \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad\left[\because\right.$ Sum of angles of a triangle is $\left.180^{\circ}\right]$

$$
\begin{aligned}
& \therefore \quad 2 x+3 x+4 x=180^{\circ} \\
& \Rightarrow \quad 9 x=180^{\circ} \quad \Rightarrow x=180^{\circ} / 9=20^{\circ} \\
& \therefore \quad \angle \mathrm{A}=2 x=2 \times 20^{\circ}=40^{\circ} \\
& \angle \mathrm{B}=3 x=3 \times 20^{\circ}=60^{\circ} \\
& \text { and } \\
& \angle \mathrm{C}=4 x=4 \times 20^{\circ}=80^{\circ}
\end{aligned}
$$

Hence, the angles of the triangles are $40^{\circ}, 60^{\circ}$ and 80°.
9. A triangle ABC is right angled at A . L is a point on BC such that $\mathrm{AL} \perp \mathrm{BC}$. Prove that $\angle \mathrm{BAL}=\angle \mathrm{ACB}$.
Sol. Given: In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}=90^{\circ}$ and $\mathrm{AL} \perp \mathrm{BC}$.
To prove: $\angle \mathrm{BAL}=\angle \mathrm{ACB}$.
Proof: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{LAC}$,
$\angle \mathrm{BAC}=\angle \mathrm{ALC} \ldots$ (1) $\left[\right.$ Each $\left.90^{\circ}\right]$
and $\angle \mathrm{ABC}=\angle \mathrm{ABL}$.

... (2) [Common angle]

Adding equations (1) and (2), we get

$$
\begin{equation*}
\angle \mathrm{BAC}+\angle \mathrm{ABC}=\angle \mathrm{ALC}+\angle \mathrm{ABC} \tag{3}
\end{equation*}
$$

In $\triangle \mathrm{ABC}, \angle \mathrm{BAC}+\angle \mathrm{ACB}+\angle \mathrm{ABC}=180^{\circ}$
[Sum of angles of triangle is 180°]
$\Rightarrow \angle \mathrm{BAC}+\angle \mathrm{ABC}=180^{\circ}-\angle \mathrm{ACB}$
In $\triangle \mathrm{ABL}, \angle \mathrm{ABL}+\angle \mathrm{ALB}+\angle \mathrm{BAL}=180^{\circ}$
[Sum of angles of triangle is 180°]
$\Rightarrow \angle \mathrm{ABL}+\angle \mathrm{ALC}=180^{\circ}-\angle \mathrm{BAL} \quad \ldots .(5)\left[\angle \mathrm{ALC}=\angle \mathrm{ALB}=90^{\circ}\right]$
Substituting the value from equation (4) and (5) in equation (3), we get
$180^{\circ}-\angle \mathrm{ACB}=180^{\circ}-\angle \mathrm{BAL} \Rightarrow \angle \mathrm{ACB}=\angle \mathrm{BAL}$
Hence, proved.
10. Two lines are respectively perpendicular to two parallel lines. Show that they are parallel to each other.

Sol. Two lines p and n are respectively perpendicular to two parallel lines l and m, i.e., $p \perp l$ and $n \perp m$.
We have to show that p is parallel to n.
As $n \perp m$, so $\angle 1=90^{\circ}$
Again, $p \perp l$, so $\angle 2=90^{\circ}$.
But, l is parallel to m, so

[Corres. $\angle s$]
$\therefore \quad \angle 3=\angle 90^{\circ}$
...(2) $\left[\because \angle 2=90^{\circ}\right]$

From (1) and (2), we get
$\Rightarrow \quad \angle 1=\angle 3$
$\left[\right.$ Each $\left.=90^{\circ}\right]$
But, these are corresponding angles.
Hence, $p \| n$.

EXERCISE 6.4

1. If two lines intersect, prove that the vertically opposite angles are equal.

Sol. Given : Two lines AB and CD intersect at point O.
To prove: (i) $\angle \mathrm{AOC}=\angle \mathrm{BOD}$

$$
\text { (ii) } \angle \mathrm{AOD}=\angle \mathrm{BOC}
$$

Proof: (i) Since, ray OA stands on line CD.

$$
\therefore \quad \angle \mathrm{AOC}+\angle \mathrm{AOD}=180^{\circ} \ldots(1)
$$

[Linear pair axiom]
Similarly, ray OD stands on line AB.
$\therefore \quad \angle \mathrm{AOD}+\angle \mathrm{BOD}=180^{\circ}$
From equations (1) and (2), we get

$$
\begin{align*}
\Rightarrow \quad \angle \mathrm{AOC}+\angle \mathrm{AOD} & =\angle \mathrm{AOD}+\angle \mathrm{BOD} \tag{2}\\
\Rightarrow \quad \angle \mathrm{AOC} & =\angle \mathrm{BOD}
\end{align*}
$$

 Hence, proved.
(ii) Since, ray OD stands on line AB .
$\therefore \quad \angle \mathrm{AOD}+\angle \mathrm{BOD}=180^{\circ}$
... (3) [Linear pair axiom]
Similarly, ray OB stands on line CD.
$\therefore \quad \angle \mathrm{DOB}+\angle \mathrm{BOC}=180^{\circ}$
From equations (3) and (4), we get

$$
\begin{equation*}
\angle \mathrm{AOD}+\angle \mathrm{BOD}=\angle \mathrm{DOB}+\angle \mathrm{BOC} \Rightarrow \angle \mathrm{AOD}=\angle \mathrm{BOC} \tag{4}
\end{equation*}
$$

Hence, proved.
2. Bisectors of interior $\angle \mathrm{B}$ and exterior $\angle \mathrm{ACD}$ of a $\triangle \mathrm{ABD}$ intersect at the point T. Prove that

$$
\angle \mathrm{BTC}=\frac{1}{2} \angle \mathrm{BAC}
$$

Sol. Given : $\triangle \mathrm{ABC}$, produce BC to D and the bisectors of $\angle \mathrm{ABC}$ and $\angle \mathrm{ACD}$ meet at point T.

To prove: $\angle \mathrm{BTC}=\frac{1}{2} \angle \mathrm{BAC}$

Proof: In $\triangle \mathrm{ABC}, \angle \mathrm{ACD}$ is an exterior angle.

$$
\therefore \quad \angle \mathrm{ACD}=\angle \mathrm{ABC}+\angle \mathrm{CAB}
$$

[Exterior angle of a triangle is equal to the sum of two opposite angles]
$\Rightarrow \quad \frac{1}{2} \angle \mathrm{ACD}=\frac{1}{2} \angle \mathrm{CAB}+\frac{1}{2} \angle \mathrm{ABC}$ [Dividing both sides by 2]
$\Rightarrow \quad \angle \mathrm{TCD}=\frac{1}{2} \angle \mathrm{CAB}+\frac{1}{2} \angle \mathrm{ABC}$

$$
\begin{equation*}
\left[\because \mathrm{CT} \text { is a bisector of } \angle \mathrm{ACD} \Rightarrow \frac{1}{2} \angle \mathrm{ACD}=\angle \mathrm{TCD}\right] \tag{1}
\end{equation*}
$$

In $\triangle \mathrm{BTC}, \angle \mathrm{TCD}=\angle \mathrm{BTC}+\angle \mathrm{CBT} \quad$ [Exterior angle of a triangle is equal to the sum of two opposite angles]
$\Rightarrow \quad \angle \mathrm{TCD}=\angle \mathrm{BTC}+\frac{1}{2} \angle \mathrm{ABC}$
$\left[\because \mathrm{BT}\right.$ is bisector of $\left.\triangle \mathrm{ABC} \Rightarrow \angle \mathrm{CBT}=\frac{1}{2} \angle \mathrm{ABC}\right]$
From equations (1) and (2), we get

$$
\begin{aligned}
& \frac{1}{2} \angle \mathrm{CAB}+\frac{1}{2} \angle \mathrm{ABC}=\angle \mathrm{BTC}+\frac{1}{2} \angle \mathrm{ABC} \\
\Rightarrow \quad & \frac{1}{2} \angle \mathrm{CAB}=\angle \mathrm{BTC} \text { or } \frac{1}{2} \angle \mathrm{BAC}=\angle \mathrm{BTC}
\end{aligned}
$$

Hence, proved.
3. A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angles so formed are parallel.
Sol. Given : Two lines DE and QR are parallel and are intersected by transversal at A and B respectively. Also, BP and AF are the bisectors of angles $\angle \mathrm{ABR}$ and $\angle \mathrm{CAE}$ respectively.

To prove: EP \|FQ
Proof: Given, $\mathrm{DE} \| \mathrm{QR} \Rightarrow \angle \mathrm{CAE}=\angle \mathrm{ABR} \quad$ [Corresponding angles]
$\Rightarrow \quad \frac{1}{2} \angle \mathrm{CAE}=\frac{1}{2} \angle \mathrm{ABR} \quad$ [Dividing both sides by 2]
$\Rightarrow \quad \angle \mathrm{CAF}=\angle \mathrm{ABP} \quad[\because \mathrm{BP}$ and AF are the bisectors of angles $\angle \mathrm{ABR}$ and $\angle \mathrm{CAE}$ respectively]
As these are the corresponding angles on the transversal line n and are equal.
Hence, EP $\|$ FQ.
4. Prove that through a given point, we can draw only one perpendicular to a given line.
[Hint: Use proof by contradiction]
Sol. From the point P, a perpendicular $P M$ is drawn to the given line AB .
$\therefore \quad \angle \mathrm{PMB}=90^{\circ}$
Let if possible, we can draw another perpendicular PN to the line AB . Then, $\angle \mathrm{PNB}=90^{\circ}$.

$\therefore \quad \angle \mathrm{PMB}=\angle \mathrm{PNB}$, which is possible only when PM and PN coincides with each other.
Hence, through a given point, we can draw only one perpendicular to a given line.
5. Prove that two lines that are respectively perpendicular to two intersecting lines intersect each other.
[Hint: Use proof by contradiction]
Sol. Given : Let lines l and m are two intersecting lines. Again, let n and p be another two lines which are perpendicular to the intersecting lines meet at point D.
To prove: Two lines n and p intersecting at a point.
Proof : Let us consider lines n and p are not intersecting, then it means they are parallel to each other i.e., $n \| p$.
Since, lines n and p are perpendicular to m and l respectively.
But from equation (1), $n \| p$, it implies that $l \| m$. It is a contradiction. Thus, our assumption is wrong. Hence, lines n and p intersect at a point.
6. Prove that a triangle must have at least two acute angles.

Sol. If the triangle is an acute angled triangle, then all its three angles are acute angles. Each of these angles is less than 90°, so they can make three angles sum equal to 180°.
If a triangle is an obtused angled triangle, then one angle which is obtuse will be more than 90° but less than 180°, so the other two acute angles can make the three angles sum equal to 180°.
If a triangle is a right angled triangle, then one angle which is right angle will be equal to 90° and the other two acute angles can make the three angles sum equal to 180°.
Hence, we can say that a triangle must have at least two acute angles.
7. In the given fig., $\angle \mathrm{Q}>\angle \mathrm{R}, \mathrm{PA}$ is the bisector of $\angle \mathrm{QPR}$ and $\mathrm{PM} \perp \mathrm{QR}$. Prove that
$\angle \mathrm{APM}=\frac{1}{2}(\angle \mathrm{Q}-\angle \mathrm{R})$
Sol. Given : $\triangle \mathrm{PQR}, \angle \mathrm{Q}>\angle \mathrm{R}, \mathrm{PA}$ is the bisector of $\angle \mathrm{QPR}$ and
 $\mathrm{PM} \perp \mathrm{QR}$.

To prove: $\quad \angle \mathrm{APM}=\frac{1}{2}(\angle \mathrm{Q}-\angle \mathrm{R})$
Proof: Since, PA is the bisector of $\angle \mathrm{QPR}$

$$
\begin{align*}
& \therefore \quad \angle \mathrm{QPA}=\angle \mathrm{APR} \tag{1}\\
& \text { In } \angle \mathrm{PQM}, \angle \mathrm{Q}+\angle \mathrm{PMQ}+\angle \mathrm{QPM}=180^{\circ}
\end{align*}
$$

[Angle sum property of a triangle]
$\Rightarrow \quad \angle \mathrm{Q}+90^{\circ}+\angle \mathrm{QPM}=180^{\circ} \quad\left[\because \angle \mathrm{PMQ}=90^{\circ}\right]$
$\Rightarrow \quad \angle \mathrm{Q}=90^{\circ}-\angle \mathrm{QPM}$
In $\triangle \mathrm{PMR}, \angle \mathrm{PMR}+\angle \mathrm{R}+\angle \mathrm{RPM}=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow 90^{\circ}+\angle \mathrm{R}+\angle \mathrm{RPM}=180^{\circ} \quad\left[\because \angle \mathrm{PMR}=90^{\circ}\right]$
$\Rightarrow \quad \angle \mathrm{R}=180^{\circ}-90^{\circ}-\angle \mathrm{RPM}$
$\Rightarrow \quad \angle \mathrm{Q}=90^{\circ}-\angle \mathrm{QPM}$
$\Rightarrow \quad \angle \mathrm{PRM}=90^{\circ}-\angle \mathrm{RPM}$
Subtracting equation (3) from equation (2), we get

$$
\begin{align*}
& \angle \mathrm{Q}-\angle \mathrm{R}=\left(90^{\circ}-\angle \mathrm{QPM}\right)-\left(90^{\circ}-\angle \mathrm{RPM}\right) \\
\Rightarrow & \angle \mathrm{Q}-\angle \mathrm{R}=\angle \mathrm{RPM}-\angle \mathrm{QPM} \\
\Rightarrow & \angle \mathrm{Q}-\angle \mathrm{R}=(\angle \mathrm{RPA}+\angle \mathrm{APM})-(\angle \mathrm{QPA}-\angle \mathrm{APM}) \tag{4}
\end{align*}
$$

$\Rightarrow \quad \angle \mathrm{Q}-\angle \mathrm{R}=\angle \mathrm{QPA}+\angle \mathrm{APM}-\angle \mathrm{QPA}+\angle \mathrm{APM}[$ Using equation (1)]
$\Rightarrow \quad \angle \mathrm{Q}-\angle \mathrm{R}=2 \angle \mathrm{APM}$
$\Rightarrow \quad \angle \mathrm{APM}=\frac{1}{2}(\angle \mathrm{Q}-\angle \mathrm{R})$
Hence, proved.

