EXERCISE 12.1

1. An isosceles right triangle has area $8 \mathrm{~cm}^{2}$. The length of its hypotenuse is:
(a) $\sqrt{32} \mathrm{~cm}$ (b) $\sqrt{16} \mathrm{~cm}$
(c) $\sqrt{48} \mathrm{~cm}$
(d) $\sqrt{24} \mathrm{~cm}$

Sol. ABC is an isosceles right triangle. We have

$$
\begin{aligned}
& \mathrm{ABC} \text { is an isosceles right triangle. We have } \\
& \qquad \begin{array}{l}
\mathrm{AB}
\end{array}=\mathrm{BC}=a \\
& \text { Area of } \Delta=\frac{1}{2} \text { base } \times \text { Height } \\
& \Rightarrow \quad 8 \\
& \Rightarrow \quad a^{2}=\frac{1}{2} \times a \times a \\
& \Rightarrow \quad[\because \mathrm{AB}=\mathrm{BC}=a]
\end{aligned}
$$

Now, hyp. $\quad \mathrm{AC}=\sqrt{4^{2}+4^{2}}=\sqrt{16+16}=\sqrt{32} \mathrm{~cm}$
Hence, (a) is the correct answer.
2. The perimeter of equilateral triangle is 60 m , then its area is:
(a) $10 \sqrt{3} \mathrm{~m}^{2}$
(b) $15 \sqrt{3} \mathrm{~m}^{2}$
(c) $20 \sqrt{3} \mathrm{~m}^{2}$ (d) $100 \sqrt{3} \mathrm{~m}^{2}$

Sol. Perimeter of triangle $=3 a$
Now, $3 a=60 \Rightarrow a=60 \div 3=20 \mathrm{~m}$

Area of equilateral $\Delta=\frac{\sqrt{3}}{4}(\text { side })^{2}=\frac{\sqrt{3}}{4} \times(20)^{2}=100 \sqrt{3} \mathrm{~m}^{2}$
Hence, (d) is the correct answer.
3. The sides of a triangle are $56 \mathrm{~cm}, 60 \mathrm{~cm}$ and 52 cm long. Then the area of the triangle is
(a) $1322 \mathrm{~cm}^{2}$ (b) $1311 \mathrm{~cm}^{2}$
(c) $1344 \mathrm{~cm}^{2}$ (d) $1392 \mathrm{~cm}^{2}$

Sol. Since, the three sides of triangle are $a=56 \mathrm{~cm}, b=60 \mathrm{~cm}$ and $c=52 \mathrm{~cm}$. Then, the semi-perimeter of triangle,

$$
s=\frac{a+b+c}{2}=\frac{56+60+52}{2}=\frac{168}{2}=84 \mathrm{~cm}
$$

Area of a triangle $=\sqrt{s(s-a)(\mathrm{s}-b)(s-c)}$ [By Heron's formula]

$$
\begin{aligned}
& =\sqrt{84(84-56)(84-60)(84-52)} \\
& =\sqrt{84 \times 28 \times 24 \times 32} \\
& =\sqrt{4 \times 7 \times 3 \times 4 \times 7 \times 4 \times 2 \times 3 \times 4 \times 4 \times 2} \\
& =\sqrt{(4)^{6} \times(7)^{2} \times(3)^{2}} \\
& =(4)^{3} \times 7 \times 3 \\
& =1344 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of triangle is $1344 \mathrm{~cm}^{2}$.
Therefore, (c) is the correct answer.
4. The area of an equilateral triangle with side $2 \sqrt{3} \mathrm{~cm}$ is
(a) $5.196 \mathrm{~cm}^{2}(b) 0.866 \mathrm{~cm}^{2}$
(c) $3.496 \mathrm{~cm}^{2}$ (d) $1.732 \mathrm{~cm}^{2}$

Sol. Area of equilateral $\Delta=\frac{\sqrt{3}}{4}(\text { side })^{2}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4}(2 \sqrt{3})^{2}=3 \sqrt{3}=3 \times 1.732 \\
& =5.196 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, (a) is the correct answer.
5. The length of each side of an equilateral triangle having an area $9 \sqrt{3} \mathrm{~cm}^{2}$ is
(a) 8 cm
(b) 36 cm
(c) 4 cm
(d) 6 cm

Sol. Area of equilateral Δ i.e., $9 \sqrt{3}=\frac{\sqrt{3}}{4}(\text { Side })^{2}$

$$
\begin{array}{ll}
\Rightarrow & (\text { Side })^{2}=\frac{9 \sqrt{3} \times 4}{\sqrt{3}}=36 \\
\therefore & \text { Side }=+\sqrt{36}=6 \mathrm{~cm}
\end{array}
$$

Hence, (d) is the correct answer.
6. If the area of equilateral triangle is $16 \sqrt{3} \mathrm{~cm}^{2}$, then the perimeter of the triangle is
(a) 48 cm
(b) 24 cm
(c) 12 cm
(d) 36 cm

Sol. Area of equilateral $\Delta=\frac{\sqrt{3}}{4}(\text { Side })^{2}$

$$
\Rightarrow \quad 16 \sqrt{3}=\frac{\sqrt{3}}{4}(\text { Side })^{2}
$$

$\Rightarrow \quad(\text { Side })^{2}=\frac{16 \sqrt{3} \times 4}{\sqrt{3}}=64$
$\therefore \quad$ Side $=+\sqrt{64}=8 \mathrm{~cm}$
So,perimeter of triangle $=8+8+8=24 \mathrm{~cm}$
Hence, (b) is the correct answer
7. The sides of a triangle are $35 \mathrm{~cm}, 54 \mathrm{~cm}$ and 61 cm , respectively. The length of its longest altitude is
(a) $16 \sqrt{5} \mathrm{~cm}$
(b) $10 \sqrt{5} \mathrm{~cm}$
(c) $24 \sqrt{5} \mathrm{~cm}$
(d) 28 cm

Sol. Sides of the triangle are $35 \mathrm{~cm}, 54 \mathrm{~cm}$ and 61 cm

$$
\begin{aligned}
s & =\frac{35+54+61}{2}=75 \mathrm{~cm} \\
\text { Area of } \Delta & =\sqrt{75(75-35)(75-54)(75-61)} \\
& =\sqrt{75 \times 40 \times 21 \times 14} \\
& =\sqrt{5 \times 5 \times 3 \times 2 \times 2 \times 2 \times 5 \times 3 \times 7 \times 7 \times 2} \\
& =5 \times 3 \times 2 \times 2 \times 7 \sqrt{5}=420 \sqrt{5} \mathrm{~cm}^{2}
\end{aligned}
$$

Now, longest altitude will be the perpendicular on the smallest side of the triangle from the opposite vertex.

$$
\begin{aligned}
\therefore \text { Length of longest altitude } & =\frac{2(\text { Area of } \Delta)}{35} \\
& =\frac{2 \times 420 \sqrt{5}}{35}=24 \sqrt{5} \mathrm{~cm}
\end{aligned}
$$

Hence, (c) is the correct answer.
8. The area of an isosceles triangle having base 2 cm and length of its equal sides 4 cm is
(a) $\sqrt{15} \mathrm{~cm}^{2}$
(b) $\sqrt{\frac{15}{2}} \mathrm{~cm}^{2}$
(c) $2 \sqrt{15} \mathrm{~cm}^{2}$
(d) $4 \sqrt{15} \mathrm{~cm}^{2}$

Sol. Here, $\quad s=\frac{4+4+2}{2}=5 \mathrm{~cm}$

$$
\text { Area of } \begin{aligned}
\Delta & =\sqrt{5(5-2)(5-4)(5-4)} \\
& =\sqrt{5 \times 3 \times 1 \times 1}=\sqrt{15} \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, (a) is the correct answer.
9. The edge of a triangular board are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . The cost of painting it at the rate of 9 paise per cm^{2} is
(a) ₹ 2.00
(b) ₹ 2.16
(c) ₹ 2.48
(d) ₹ 3.00

Sol. Here, $2 s=6+8+10=24 \Rightarrow s=24 \div 2=12 \mathrm{~cm}$

$$
\text { Area of } \begin{aligned}
\Delta & =\sqrt{12(12-6)(12-8)(12-10)} \\
& =\sqrt{2 \times 6 \times 6 \times 4 \times 2}=2 \times 6 \times 2=24 \mathrm{~cm}^{2}
\end{aligned}
$$

Cost of painting at the rate of 9 paise per $\mathrm{cm}^{2}=₹(24 \times 0.09)=₹ 2.16$ Hence, (b) is the correct answer.

EXERCISE 12.2

Write whether the following statements are True or False. Justify your answer.

1. The area of a triangle with base 4 cm and height 6 cm is $24 \mathrm{~cm}^{2}$.

Sol. Area of $\Delta=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times 4 \times 6=12 \mathrm{~cm}^{2}$
Hence, the given statement is false.
2. The area of $\triangle \mathrm{ABC}$ is $8 \mathrm{~cm}^{2}$ in which $\mathrm{AB}=\mathrm{AC}=4 \mathrm{~cm}$ and $\angle \mathrm{A}=90^{\circ}$.

Sol. Area of $\Delta=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times 4 \times 4=8 \mathrm{~cm}^{2}$
Hence, the given statement is true.

3. The area of the isosceles triangle is $\frac{5}{4} \sqrt{11} \mathrm{~cm}^{2}$ if the perimeter 11 is and the base is 5 cm .
Sol. Let the equal sides of the isosceles triangle be ' a ' and base of the triangle be ' b '.

$$
\begin{aligned}
\text { Perimeter of } \Delta & =5+a+a=11 \\
2 a & =11-5=6 ; a=6 \div 2=3 \mathrm{~cm} \\
\text { Area of isosceles } \Delta & =\frac{b}{4} \sqrt{4 a^{2}-b^{2}}=\frac{5}{4} \sqrt{4(3)^{2}-5^{2}} \\
& =\frac{5}{4} \sqrt{11} \mathrm{~cm}^{2}
\end{aligned}
$$

Hence the given statement is true.
4. The area of the equilateral triangle is $20 \sqrt{3} \mathrm{~cm}^{2}$ whose each side is 8 cm .

Sol. Area of equilateral $\Delta=\frac{\sqrt{3}}{4}(\text { side })^{2}$

$$
=\frac{\sqrt{3}}{4}(8)^{2}=\frac{\sqrt{3}}{4} \times 64=16 \sqrt{3} \mathrm{~cm}^{2}
$$

Hence, the given statement is false.
5. If the side of a rhombus is 10 cm and one diagonal is 16 cm , the area of the rhombus $96 \mathrm{~cm}^{2}$.
Sol. Let ABCD be the rhombus whose one diagonal AC is 16 cm . Each side of rhombus is 10 cm .
We know that diagonal of a rhombus bisect each other at right angles, so

$$
\mathrm{OA}=\mathrm{OC}=8 \mathrm{~cm} \text { and } \mathrm{OB}=\mathrm{OD} .
$$

In $\triangle \mathrm{AOB}$, we have $\angle \mathrm{AOB}=90^{\circ}$

$$
\begin{aligned}
& \therefore \quad \mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2} \\
& \Rightarrow \quad \mathrm{OB}^{2}=\mathrm{AB}^{2}-\mathrm{OA}^{2} \\
& =(10)^{2}-8^{2}=100-64=36 \\
& \therefore \quad \mathrm{OB}=+\sqrt{36}=6 \mathrm{~cm} \\
& \therefore \quad \mathrm{DB}=2(\mathrm{OB})=2 \times 6=12 \mathrm{~cm}
\end{aligned}
$$

Hence, area of rhombus $=\frac{1}{2} \times$ Product of diagonals

$$
=\frac{1}{2} \times 16 \times 12=96 \mathrm{~cm}^{2}
$$

Hence, the given statement is true.
6. The base and the corresponding altitude of a parallelogram are 10 cm and 3.5 cm respectively The area of the parallelogram is $30 \mathrm{~cm}^{2}$.
Sol. The base of the parallelogram is 10 cm and the corresponding altitude is 3.5 cm .

$$
\text { Area of } \begin{aligned}
\| \mathrm{gm} & =\text { base } \times \text { corresponding altitude } \\
& =10 \mathrm{~cm} \times 3.5 \mathrm{~cm}=35 \mathrm{~cm}^{2} .
\end{aligned}
$$

Hence, the given statement is false.
7. The area of a regular hexagon of side ' a ' is the sum of the areas of the five equilateral triangles with side a.
Sol. We see a regular hexagon is divided into six equilateral triangles. So, the area of a regular hexagon of side ' a ' is the sum of the areas of the six equilateral triangles with side a.

Hence, the given statement that the area of a regular hexagon of side ' a ' is the sum of the areas of the five equilateral triangles with side a is false.
8. The cost of levelling the ground in the form of a triangle having the sides $51 \mathrm{~m}, 37 \mathrm{~m}$ and 20 m at the rate of $₹ 3$ per m${ }^{2}$ is ₹ 918 .
Sol. We have

$$
\begin{aligned}
2 s & =51 \mathrm{~m}+37 \mathrm{~m}+20 \mathrm{~m}=108 \mathrm{~m} \\
s & =108 \div 2=54 \mathrm{~m}
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\Delta & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{54(54-51)(54-37)(54-20)} \\
& =\sqrt{54 \times 3 \times 17 \times 34} \\
& =\sqrt{3 \times 3 \times 3 \times 2 \times 3 \times 17 \times 17 \times 2} \\
& =3 \times 3 \times 17 \times 2=306 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of levelling the ground $=₹(306 \times 3)=₹ 918$ Hence, the given statement is true.
9. In a triangle, the sides are given as $11 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . The length of the altitude is 10.25 cm corresponding to the side having length 12 cm .
Sol. We have the length of the altitude corresponding to the side having length 12 cm .

$$
\begin{aligned}
2 s & =11 \mathrm{~cm}+12 \mathrm{~cm}+13 \mathrm{~cm}=36 \mathrm{~cm} \\
s & =36 \div 2=18 \mathrm{~cm} \\
\text { Area of } \Delta & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{18(18-11)(18-12)(18-13)} \\
& =\sqrt{18 \times 7 \times 6 \times 5}=\sqrt{2 \times 3 \times 3 \times 7 \times 2 \times 3 \times 5} \\
& =2 \times 3 \sqrt{105}=6 \sqrt{105} \mathrm{~cm}^{2} \\
\text { Length of altitude } & =\frac{2 \text { Area of } \Delta}{\text { Base }}=\frac{2 \times 6 \sqrt{105}}{12} \\
& =\sqrt{105}=10.25 \mathrm{~cm}
\end{aligned}
$$

Hence, the given statement is true.

EXERCISE 12.3

1. Find the cost of laying grass in a triangular field of sides $50 \mathrm{~m}, 65 \mathrm{~m}$ and 65 m at the rate of $₹ 7$ per m^{2}.
Sol. We have,

$$
\begin{aligned}
2 s & =50 \mathrm{~m}+65 \mathrm{~m}+65 \mathrm{~m}=180 \mathrm{~m} \\
s & =180 \div 2=90 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of } \Delta & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{90(90-50)(90-65)(90-65)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{90 \times 40 \times 25 \times 25}=60 \times 25 \\
& =1500 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of laying grass at the rate of $₹ 7$ per $\mathrm{m}^{2}=₹(1500 \times 7)=₹ 10,500$
2. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $13 \mathrm{~m}, 14 \mathrm{~m}$, and 15 m . The advertisement yield an earning of ₹ 2000 per m^{2} a year. A company hired one of its walls for 6 months. How much rent did it pay?
Sol. The sides of triangular side walls of a flyover which have been used for advertisements are $13 \mathrm{~m}, 14 \mathrm{~m}, 15 \mathrm{~m}$.

$$
\begin{aligned}
s & =\frac{13+14+15}{2}=\frac{42}{2}=21 \mathrm{~m} \\
& =\sqrt{21(21-13)(21-14)(21-15)} \\
& =\sqrt{21 \times 8 \times 7 \times 6} \\
& =\sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 7 \times 3 \times 2} \\
& =7 \times 3 \times 2 \times 2=84 \mathrm{~m}^{2}
\end{aligned}
$$

It is given that the advertisement yield an earning of $₹ 2,000 \mathrm{per} \mathrm{m}^{2} \mathrm{a}$ year.
$\therefore \quad$ Rent for $1 \mathrm{~m}^{2}$ for 1 year $=₹ 2000$
So, rent for $1 \mathrm{~m}^{2}$ for 6 months or $\frac{1}{2}$ year $=₹\left(\frac{1}{2} \times 2000\right)=₹ 1,000$.
\therefore Rent for $84 \mathrm{~m}^{2}$ for 6 months $=₹(1000 \times 84)=₹ 84,000$.
3. From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are 14 $\mathrm{cm}, 10 \mathrm{~cm}$ and 6 cm . Find the area of the triangle.
Sol. Let ABC be an equilateral triangle, O be the interior point and OQ, OR and OC are the perpendiculars drawn from point O. Let the sides of an equilateral triangle be $a \mathrm{~m}$.

$$
\begin{align*}
\text { Area of } \triangle \mathrm{OAB} & =\frac{1}{2} \times \mathrm{AB} \times \mathrm{OP} \\
{[\because \text { Area of a triangle }} & \left.=\frac{1}{2} \times(\text { base } \times \text { height })\right] \\
& =\frac{1}{2} \times a \times 14=7 a \mathrm{~cm}^{2} \tag{1}\\
\text { Area of } \triangle \mathrm{OBC} & =\frac{1}{2} \times \mathrm{BC} \times \mathrm{OQ}=\frac{1}{2} \times a \times 10 \\
& =5 a \mathrm{~cm}^{2} \tag{2}
\end{align*}
$$

$$
\text { Area of } \begin{align*}
\triangle \mathrm{OAC} & =\frac{1}{2} \times \mathrm{AC} \times \mathrm{OR}=\frac{1}{2} \times a \times 6 \\
& =3 a \mathrm{~cm}^{2} \tag{3}
\end{align*}
$$

\therefore Area of an equilateral $\triangle \mathrm{ABC}$

$$
\begin{align*}
& =\text { Area of }(\Delta \mathrm{OAB}+\Delta \mathrm{OBC}+\Delta \mathrm{OAC}) \\
& =(7 a+5 a+3 a) \mathrm{cm}^{2} \\
& =15 a \mathrm{~cm}^{2} \tag{4}
\end{align*}
$$

We have, semi-perimeter $s=\frac{a+a+a}{2}$

$$
\Rightarrow \quad s=\frac{3 a}{2} \mathrm{~cm}
$$

\therefore Area of an equilateral $\triangle \mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$
[By Heron's formula]

$$
\begin{align*}
& =\sqrt{\frac{3 a}{2}\left(\frac{3 a}{2}-a\right)\left(\frac{3 a}{2}-a\right)\left(\frac{3 a}{2}-a\right)} \\
& =\sqrt{\frac{3 a}{2} \times \frac{a}{2} \times \frac{a}{2} \times \frac{a}{2}} \\
& =\frac{\sqrt{3}}{4} a^{2} \tag{5}
\end{align*}
$$

From equations (4) and (5), we get

$$
\begin{array}{rlrl}
& & \frac{\sqrt{3}}{4} a^{2} & =15 a \\
\Rightarrow \quad & a & =\frac{15 \times 4}{\sqrt{3}}=\frac{60}{\sqrt{3}} \\
\Rightarrow \quad & & a & =\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=20 \sqrt{3} \mathrm{~cm}
\end{array}
$$

On putting $a=20 \sqrt{3}$ in equation (5), we get

$$
\text { Area of } \triangle \mathrm{ABC}=\frac{\sqrt{3}}{4}(20 \sqrt{3})^{2}=\frac{\sqrt{3}}{4} \times 400 \times 3=300 \sqrt{3} \mathrm{~cm}^{2}
$$

Hence, the area of an equilateral triangle is $300 \sqrt{3} \mathrm{~cm}^{2}$
4. The perimeter of an isosceles triangle is 32 cm . The ratio of the equal side to its base is $3: 2$. Find the area of the triangle.
Sol. As the sides of the equal side to the base of an isosceles triangle is $3: 2$, so let the sides of an isosceles triangle be $3 x, 3 x$ and $2 x$.
Now, perimeter of triangle $=3 x+3 x+2 x=8 x$
Given perimeter of the triangle $=32 \mathrm{~m}$
$\therefore 8 x=32 ; x=32 \div 8=4$

So, the sides of the isosceles triangle are $(3 \times 4) \mathrm{cm},(3 \times 4) \mathrm{cm},(2 \times 4) \mathrm{cm}$ i.e., $12 \mathrm{~cm}, 12 \mathrm{~cm}$ and 8 cm

$$
\begin{aligned}
\therefore \quad s & =\frac{12+12+8}{2}=\frac{32}{2}=16 \mathrm{~cm} \\
& =\sqrt{16(16-12)(16-12)(16-8)} \\
& =\sqrt{16 \times 4 \times 4 \times 8}=\sqrt{4 \times 4 \times 4 \times 4 \times 4 \times 2} \\
& =4 \times 4 \times 2 \sqrt{2}=32 \sqrt{2} \mathrm{~cm}^{2}
\end{aligned}
$$

5. Find the area of a parallelogram given in the figure. Also find the length of the altitude from vertex A on the side DC .
Sol. Area of parallelogram $\mathrm{ABCD}=2$ (Area of $\triangle \mathrm{BCD}$)
Now, the sides of $\triangle \mathrm{BCD}$ are
$a=12 \mathrm{~cm}, b=17 \mathrm{~cm}$. and $c=25 \mathrm{~cm}$.
\therefore Semi-perimeter of $\triangle \mathrm{BCD}$,

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{12+17+25}{2} \\
& =\frac{54}{2}=27 \mathrm{~cm} \\
\therefore \text { Area of } \triangle \mathrm{BCD} & =\sqrt{s(s-a)(s-b)(s-c)} \quad \text { [By Heron's formula] } \\
& =\sqrt{27(27-12)(27-17)(27-25)} \\
& =\sqrt{27 \times 5 \times 10 \times 2} \\
& =\sqrt{9 \times 3 \times 3 \times 5 \times 5 \times 2 \times 2}=3 \times 3 \times 5 \times 2 \\
& =90 \mathrm{~cm}^{2}
\end{aligned}
$$

From equation (1), we get
Area of parallelogram $\mathrm{ABCD}=2 \times 90=180 \mathrm{~cm}^{2}$
Let the altitude of parallelogram be h.
Also, area of parallelogram $\mathrm{ABCD}=$ Base \times Altitude
$\Rightarrow \quad 180=\mathrm{DC} \times h$
$\Rightarrow \quad 180=12 \times h$
$\Rightarrow \quad h=\frac{180}{12}=15 \mathrm{~cm}$
Hence, the area of parallelogram is $180 \mathrm{~cm}^{2}$ and the length of altitude is 15 cm .
6. A field in the form of parallelogram has sides 60 m and 40 m and one of its diagonals is 80 m long. Find the area of parallelogram.
Sol. Let the field be ABCD .
Area of the parallelogram $\mathrm{ABCD}=2$ (Area of $\triangle \mathrm{ABC}$)
Now, the sides of $\triangle \mathrm{ABC}$ are
$a=40 \mathrm{~m}, b=60 \mathrm{~m}$ and $c=80 \mathrm{~m}$
\therefore Semi-perimeter of $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{40+60+80}{2} \quad \text { A } 40 \mathrm{~m} \quad \text { B } \\
& =\frac{180}{2}=90 \mathrm{~m} \\
\therefore \quad \text { Area of } \triangle \mathrm{ABC} & =\sqrt{s(s-a)(s-b)(s-c)} \quad \text { [By Heron's Formula] } \\
& =\sqrt{90(90-40)(90-60)(90-80)} \\
& =\sqrt{90 \times 50 \times 30 \times 10} \\
& =\sqrt{3 \times 30 \times 5 \times 10 \times 30 \times 10} \\
& =300 \sqrt{15} \mathrm{~m}^{2}=1161.895 \mathrm{~m}^{2}
\end{aligned}
$$

From equation (1), we get
Area of parallelogram $\mathrm{ABCD}=2 \times 1161.895=2323.79 \mathrm{~m}^{2}$
7. The perimeter of a triangular field is 420 m and its sides are in the ratio $6: 7: 8$. Find the area of the triangular field.
Sol. Suppose that the sides in metres are $6 x, 7 x$ and $8 x$.
Now, $6 x+7 x+8 x=$ Perimeter $=420$
$\Rightarrow \quad 21 x=420$
$\Rightarrow \quad x=\frac{420}{21}$
$\Rightarrow \quad x=20$
\therefore The sides of the triangular field are $6 \times 20 \mathrm{~m}, 7 \times 20 \mathrm{~m}, 8 \times 20 \mathrm{~m}$, i.e., $120 \mathrm{~m}, 140 \mathrm{~m}$, and 160 m .
Now,
$s=$ Half the perimeter of triangular field

$$
=\frac{1}{2} \times 420 \mathrm{~m}=210 \mathrm{~m}
$$

Using Heron's formula,

$$
\begin{aligned}
\text { Area of the triangular field } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{210(210-120)(210-140)(210-160)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{210 \times 90 \times 70 \times 50} \\
& =\sqrt{66150000}=8133.265 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the area of the triangular field $=8133.265 \mathrm{~m}^{2}$.
8. The sides of a quadrilateral ABCD are $6 \mathrm{~cm}, 8 \mathrm{~cm}, 12 \mathrm{~cm}$ and 14 cm (taken in order) respectively, and the angle between the first two sides is a right angle. Find its area.
Sol. We have to find the area of quadrilateral $\mathrm{ABCD} . \mathrm{ABC}$ is a right triangle.
\therefore By Pythagoras theorem, we have

$$
\begin{aligned}
\mathrm{AC} & =\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}} \\
& =\sqrt{(6)^{2}+(8)^{2}} \\
& =\sqrt{36+64} \\
& =\sqrt{100}=10 \mathrm{~cm} \\
\text { Area of } \triangle \mathrm{ABC} & =\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC} \\
& =\frac{1}{2} \times 6 \times 8 \mathrm{~cm}^{2}=24 \mathrm{~cm}^{2}
\end{aligned}
$$

Let $a=10 \mathrm{~cm}, b=12 \mathrm{~cm}$ and $c=14 \mathrm{~cm}$

$$
\begin{aligned}
\therefore \quad s & =\frac{a+b+c}{2} \\
& =\frac{10+12+14}{2}=\frac{36}{2}=18 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ACD} & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{18(18-10)(18-12)(18-14)} \\
& =\sqrt{18 \times 8 \times 6 \times 4}=\sqrt{3456} \\
& =58.787 \mathrm{~cm}^{2} \text { (approx.) }
\end{aligned}
$$

\therefore Area of quadrilateral ABCD

$$
\begin{aligned}
& =\text { Area of } \triangle \mathrm{ABC}+\text { Area of } \triangle \mathrm{ACD} \\
& =24 \mathrm{~cm}^{2}+58.787 \mathrm{~cm}^{2} \\
& =82.787 \mathrm{~cm}^{2} \text { (approx.) }
\end{aligned}
$$

9. A rhombus shaped sheet with perimeter 40 cm and one diagonal 12 cm , is painted on both sides at the rate of ₹ 5 per cm^{2}. Find the cost of painting.

Sol. Perimeter of rhombus $=40 \mathrm{~cm}$
$\therefore 4 \times$ side $=40$

$$
\Rightarrow \text { Side }=\frac{40}{4}=10 \mathrm{~cm}
$$

One diagonal $=12 \mathrm{~cm}$
As rhombus is also a parallelogram, so its diagonal divide it into two congruent triangles of equal area.
\therefore Area of rhombus $=2$ (Area of triangle with
 sides $10 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm)
So, let $a=10 \mathrm{~cm}, b=10 \mathrm{~cm}$ and $c=12 \mathrm{~cm}$

$$
\begin{array}{ll}
\therefore s=\frac{a+b+c}{2}= & \frac{10+10+12}{2}=\frac{32}{2}=16 \mathrm{~cm} \\
\therefore & \\
& \text { Area of } \triangle \mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}
\end{array}
$$

$$
=\sqrt{16(16-10)(16-10)(16-12)}
$$

$$
=\sqrt{16 \times 6 \times 6 \times 4}=\sqrt{2304}=48 \mathrm{~cm}^{2}
$$

Now, area of rhombus $\mathrm{ABCD}=2$ (Area of $\triangle \mathrm{ABC}$)

$$
=2 \times 48 \mathrm{~cm}^{2}=96 \mathrm{~cm}^{2}
$$

Now, cost of painting both sides of rhombus shaped sheet ABCD

$$
=₹ 2 \times 5 \times 96=₹ 960
$$

10. Find the area of the trapezium PQRS with height PQ given in the figure.
Sol. Draw RT \perp PS From the figure, it is clear that

$$
\begin{aligned}
\mathrm{ST} & =\mathrm{PS}-\mathrm{PT} \\
& =12 \mathrm{~m}-7 \mathrm{~m} \\
& =5 \mathrm{~m}
\end{aligned}
$$

Now, from right triangle RTS, we have

$$
\mathrm{RS}^{2}=\mathrm{RT}^{2}+\mathrm{ST}^{2}
$$

$$
\Rightarrow \mathrm{RT}^{2}=\mathrm{RS}^{2}-\mathrm{ST}^{2}=(13)^{2}-5^{2}
$$

$$
\therefore \quad \mathrm{RT}^{2}=169-25=144 \Rightarrow \mathrm{RT}=+\sqrt{144}=12 \mathrm{~m}
$$

Now, area of trapezium PQRS

$$
\begin{aligned}
& =(\mathrm{PS}+\mathrm{QR}) \times \mathrm{RT}=\frac{1}{2}(12 \mathrm{~m}+7 \mathrm{~m}) \times 12 \mathrm{~m} \\
& =\frac{1}{2} \times 19 \mathrm{~m} \times 12 \mathrm{~m}=\frac{1}{2} \times 228 \mathrm{~m}^{2}=114 \mathrm{~m}^{2}
\end{aligned}
$$

EXERCISE 12.4

1. How much paper of each shade is needed to make a kite a kite given in the figure, in which ABCD is a square with diagonal 44 cm ?
Sol. Each diagonal of square $=44 \mathrm{~cm}$ and as diagonals of a square bisect each other at right angles
\therefore Area of square ABCD

$$
\begin{aligned}
& =2(\text { area of } \triangle \mathrm{ABC}) \\
& =2\left(\frac{1}{2} \times 44 \times 22\right)=2(44 \times 11) \\
& =968 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Paper of Red shade needed to make the
 kite

$$
=\frac{1}{4}\left(968 \mathrm{~cm}^{2}\right)=242 \mathrm{~cm}^{2}
$$

Paper of yellow shade needed to make the kite

$$
=(242+242) \mathrm{cm}^{2}=484 \mathrm{~cm}^{2}
$$

Let us find the area of a triangle with sides $20 \mathrm{~cm}, 20 \mathrm{~cm}$ and 14 cm which is at the bottom of the square ABCD .
Now, semiperimeter

$$
\begin{aligned}
s & =\frac{20+20+14}{2}=\frac{54}{2}=27 \mathrm{~cm} \\
\text { Area of } \Delta & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{27(27-20)(27-20)(27-14)} \\
& =\sqrt{27 \times 7 \times 7 \times 13}=21 \sqrt{39} \\
& =21 \times 6.245=131.15 \mathrm{~cm}^{2}
\end{aligned}
$$

Paper of Green shade needed to make the kite

$$
=(242+131.15) \mathrm{cm}^{2}=373.15 \mathrm{~cm}^{2}
$$

2. The perimeter of a triangle is 50 cm . One side of a triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle.
Sol. Let the smaller side of the triangle be $x \mathrm{~cm}$. Therefore, the second side will be $(x+4) \mathrm{cm}$, and third side is $(2 x-6) \mathrm{cm}$. Now, perimeter of triangle $=x+(x+4)+(2 x-6)$

$$
=(4 x-2) \mathrm{cm}
$$

$$
\begin{aligned}
& \text { Also, perimeter of triangle }=50 \mathrm{~cm} . \\
& \qquad 4 x=52 ; x=52 \div 4=13
\end{aligned}
$$

Therefore, the three sides are $13 \mathrm{~cm}, 17 \mathrm{~cm}, 20 \mathrm{~cm}$

$$
\begin{aligned}
s & =\frac{13+17+20}{2}=\frac{50}{2}=25 \mathrm{~cm} \\
\therefore \quad \text { Area of } \Delta & =\sqrt{25(25-13)(25-17)(25-20)} \\
& =\sqrt{25 \times 12 \times 8 \times 5}=\sqrt{5 \times 5 \times 4 \times 3 \times 4 \times 2 \times 5} \\
& =5 \times 4 \times \sqrt{3 \times 2 \times 5}=20 \sqrt{30} \mathrm{~cm}^{2}
\end{aligned}
$$

3. The area of a trapezium is $475 \mathrm{~cm}^{2}$ and height is 19 cm . Find the lengths of its two parallel sides if one side of 4 cm greater than the other.
Sol. Area of trapezium $=\frac{1}{2} \times($ Sum of the parallel sides $) \times$ height

$$
\begin{array}{ll}
\Rightarrow & 475=\frac{1}{2} \times(x+x+4) \times 19 \mathrm{~cm} \\
\Rightarrow & 2 x+4=\frac{950}{19}=50 \\
\Rightarrow & 2 x=50-4=46 ; x=46 \div 2=23
\end{array}
$$

Hence, the length of two parallel sides are 23 cm and $(23+4) \mathrm{cm}$ i.e 23 cm and 27 cm .
4. A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in front. According to the laws, a minimum of 3 m , wide space should be left in the front and back each, 2 m wide space on each of other sides. Find the largest area where house can be constructed.
Sol. The length of the rectangular plot $=40 \mathrm{~m}$ and the breadth of the plot $=15 \mathrm{~m}$.
As a minimum of 3 m wide space should be left in the front and back 2 m wide space each of other side, so the largest area where the house can be constructed

$$
=[40-2(3)][15-2(2)]=34 \times 11=374 \mathrm{~m}^{2}
$$

5. A field in the shape of a trapezium having parallel sides 90 m and 30 m These sides meet the third side at right angles. The length of the fourth side is 100 m . If it costs ₹ 4 to plough $1 \mathrm{~m}^{2}$ of the field, find the total cost of ploughing the field.
Sol. The two parallel sides are $\mathrm{AB}=90 \mathrm{~m}$ and $\mathrm{CD}=30 \mathrm{~m} . \mathrm{DM} \perp \mathrm{AB}$ Now,

$$
\mathrm{MB}=\mathrm{AB}-\mathrm{AM}=90 \mathrm{~m}-30 \mathrm{~m}=60 \mathrm{~m} .
$$

In right triangle DMB , we have

$$
\mathrm{DM}^{2}=\mathrm{DB}^{2}-\mathrm{MB}^{2}=(100)^{2}-(60)^{2}
$$

$$
\Rightarrow \quad \mathrm{DM}=+\sqrt{6400}=80 \mathrm{~m}
$$

\therefore The area of the field ABDC which is trapezium in shape

$$
\begin{aligned}
& =\frac{1}{2} \times(\text { Sum of the parallel sides }) \times \text { height } \\
& =\frac{1}{2} \times(90+30) \times 80 \mathrm{~m}^{2} \\
& =\frac{1}{2} \times 120 \times 80=4800 \mathrm{~m}^{2}
\end{aligned}
$$

Total cost of ploughing the field at the rate of $₹ 4$ per $\mathrm{m}^{2}=₹(4800 \times 4)$ $=₹ 19,200$.
6. In given figure, $\triangle \mathrm{ABC}$ has sides $\mathrm{AB}=7.5$ $\mathrm{cm}, \mathrm{AC}=6.5 \mathrm{~cm}$ and $\mathrm{BC}=7 \mathrm{~cm}$. On base $B C$ a parallelogram $D B C E$ of same area as that of $\triangle \mathrm{ABC}$ is constructed. Find the height DF of the parallelogram.
Sol. Sides of triangle ABC are $7.5 \mathrm{~cm}, 7 \mathrm{~cm}$ and 6.5 cm .
The semi-perimeter of $\triangle \mathrm{ABC}$

$$
\begin{aligned}
s=\frac{7.5+7+6.5}{2} & =\frac{21}{2}=10.5 \mathrm{~cm} \\
\text { Area of } \triangle \mathrm{ABC} & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{10.5(10.5-7.5)(10.5-7)(10.5-6.5)} \\
& =\sqrt{10.5 \times 3 \times 3.5 \times 4}=\sqrt{31.5 \times 14} \\
& =\sqrt{441}=21 \mathrm{~cm}^{2}
\end{aligned}
$$

Now, as on base BC a parallelogram DBCE of same area as that of
$\triangle \mathrm{ABC}$ is constructed. Therefore, area of $\| \mathrm{gm} . \mathrm{DBCE}=21 \mathrm{~cm}^{2}$
Also, area of $\| \mathrm{gm} \triangle \mathrm{BCE}=\mathrm{BC} \times \mathrm{DF}$
$\therefore \quad \mathrm{BC} \times \mathrm{DF}=21 \mathrm{~cm}^{2}$
$\Rightarrow \quad 7 \times \mathrm{DF}=21 \mathrm{~cm}^{2}$
$\Rightarrow \quad \mathrm{DF}=21 \mathrm{~cm}^{2} \div 7 \mathrm{~cm}=3 \mathrm{~cm}$
Hence, the height DF of the parallelogram $=3 \mathrm{~cm}$.
7. The dimensions of a rectangle ABCD are $51 \mathrm{~cm} \times 25 \mathrm{~cm}$. A trapezium with its parallel sides QC and PD in the ratio $9: 8$, is cut off form the rectangle as shown in the given figure. If the area of the trapezium PQCD is $\frac{5}{6}$ th part of the area of the rectangle, find the lengths QC and PD.

Sol. ABCD is a rectangle in which $\mathrm{AB}=51 \mathrm{~cm}$ and $\mathrm{BC}=25 \mathrm{~cm}$.
Since parallel sides QC and PD are in the ratio $9: 8$, so let $\mathrm{QC}=9 x$ and $\mathrm{PD}=8 x$.
Now, area of trapezium PQCD $=\frac{1}{2} \times(9 x+8 x) \times 25 \mathrm{~cm}^{2}$

$$
=\frac{1}{2} \times 17 x \times 25
$$

Area of rectangle $\mathrm{ABCD}=\mathrm{BC} \times \mathrm{CD}=51 \times 25$
It is given that area of trapezium $\mathrm{PQCD}=\frac{5}{6} \times$ Area of rectangle ABCD .

$$
\begin{aligned}
\therefore & \frac{1}{2} \times 17 x \times 25 & =\frac{5}{6} \times 51 \times 25 \\
\Rightarrow & x & =\frac{5}{6} \times 51 \times 25 \times 2 \times \frac{1}{17 \times 25}=5
\end{aligned}
$$

Hence, the length $\mathrm{QC}=9 x=9 \times 5=45 \mathrm{~cm}$.
and the length $\mathrm{PD}=8 x=8 \times 5=40 \mathrm{~cm}$.
8. A design is made on a rectangular tile of dimensions $50 \mathrm{~cm} \times 70 \mathrm{~cm}$ as shown in the given figure. The design shows 8 triangles, each of sides $26 \mathrm{~cm}, 17 \mathrm{~cm}$ and 25 cm . Find the total area of the design and the remaining area of the tile.

Sol. Given, the dimensions of rectangular tile are $50 \mathrm{~cm} \times 70 \mathrm{~cm}$
\therefore Area of rectangular tile $=50 \times 70=3500 \mathrm{~cm}^{2}$
The sides of a design of one triangle be $a=25 \mathrm{~cm}, b=17 \mathrm{~cm}$ and $c=26 \mathrm{~cm}$.

Now, semi-perimeter, $\quad s=\frac{a+b+c}{2}$

$$
=\frac{25+17+26}{2}=\frac{68}{2}=34 \mathrm{~cm}
$$

$$
\therefore \quad \text { Area of } \triangle \mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}
$$

[By Heron's formula]

$$
\begin{aligned}
& =\sqrt{34 \times 9 \times 17 \times 8} \\
& =\sqrt{17 \times 2 \times 3 \times 3 \times 17 \times 2 \times 2 \times 2} \\
& =17 \times 3 \times 2 \times 2 \\
& =204 \mathrm{~cm}^{2} \\
& =204 \times 8=1632 \mathrm{~cm}^{2} \\
& =\text { Total area of eight triangles } \\
& =1632 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Total area of eight triangles $=204 \times 8=1632 \mathrm{~cm}^{2}$
Now, area of the design $=$ Total area of eight triangles

Also, remaining area of the tile $=$ Area of the rectangle - Area of the design

$$
\begin{aligned}
& =3500 \mathrm{~cm}^{2}-1632 \mathrm{~cm}^{2} \\
& =1868 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the total area of the design is $1632 \mathrm{~cm}^{2}$ and the remaining area of the tile is $1868 \mathrm{~cm}^{2}$.

