An isosceles right triangle has area 8 cm². The length of its hypotenuse is:

(a) $10\sqrt{3}$ m² (b) $15\sqrt{3}$ m² (c) $20\sqrt{3}$ m² (d) $100\sqrt{3}$ m²

Sol. Perimeter of triangle = 3a

Now,

$$3a = 60 \Rightarrow a = 60 \div 3 =$$

Area of equilateral
$$\Delta = \frac{\sqrt{3}}{4}$$
 (side)² = $\frac{\sqrt{3}}{4} \times (20)^2 = 100\sqrt{3}$ m²

20 m

Hence, (d) is the correct answer.

3. The sides of a triangle are 56 cm, 60 cm and 52 cm long. Then the area of the triangle is

(a) 1322 cm^2 (b) 1311 cm^2 (c) 1344 cm^2 (d) 1392 cm^2

Sol. Since, the three sides of triangle are a = 56 cm, b = 60 cm and c = 52 cm. Then, the semi-perimeter of triangle,

$$s = \frac{a+b+c}{2} = \frac{56+60+52}{2} = \frac{168}{2} = 84 \text{ cm}$$

Area of a triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ [By Heron's formula]

$$= \sqrt{84(84 - 56)(84 - 60)(84 - 52)}$$

= $\sqrt{84 \times 28 \times 24 \times 32}$
= $\sqrt{4 \times 7 \times 3 \times 4 \times 7 \times 4 \times 2 \times 3 \times 4 \times 4 \times 2}$
= $\sqrt{(4)^6 \times (7)^2 \times (3)^2}$
= $(4)^3 \times 7 \times 3$
= 1344 cm^2

Hence, the area of triangle is 1344 cm^2 . Therefore, (*c*) is the correct answer.

4. The area of an equilateral triangle with side $2\sqrt{3}$ cm is (a) 5.196 cm²(b) 0.866 cm²(c) 3.496 cm²(d) 1.732 cm²

Sol. Area of equilateral
$$\Delta = \frac{\sqrt{3}}{4} (\text{side})^2$$

= $\frac{\sqrt{3}}{4} (2\sqrt{3})^2 = 3\sqrt{3} = 3 \times 1.732$
= 5.196 cm²

Hence, (a) is the correct answer.

5. The length of each side of an equilateral triangle having an area $9\sqrt{3}$ cm² is

(a) 8 cm (b) 36 cm (c) 4 cm (d) 6 cm

Sol. Area of equilateral $\Delta i.e.$, $9\sqrt{3} = \frac{\sqrt{3}}{4}$ (Side)²

 $(\text{Side})^2 = \frac{9\sqrt{3} \times 4}{\sqrt{3}} = 36$

 \Rightarrow

 \Rightarrow

 $\therefore \qquad \text{Side} = \pm \sqrt{36} = 6 \text{ cm}$ Hence, (d) is the correct answer.

6. If the area of equilateral triangle is $16\sqrt{3}$ cm², then the perimeter of the triangle is

(a) 48 cm (b) 24 cm (c) 12 cm (d) 36 cm

Sol. Area of equilateral $\Delta = \frac{\sqrt{3}}{4}$ (Side)²

$$16\sqrt{3} = \frac{\sqrt{3}}{4}$$
 (Side)²

$$\Rightarrow$$

$$(\text{Side})^2 = \frac{16\sqrt{3} \times 4}{\sqrt{3}} = 64$$
$$\text{Side} = \pm\sqrt{64} = 8 \text{ cm}$$

_

:. Side = $+\sqrt{64} = 8$ cm So, perimeter of triangle = 8 + 8 + 8 = 24 cm Hence, (*b*) is the correct answer

7. The sides of a triangle are 35 cm, 54 cm and 61 cm, respectively. The length of its longest altitude is

(a) $16\sqrt{5}$ cm	<i>(b)</i>	10√5	cm
---------------------	------------	------	----

(c) $24\sqrt{5}$ cm	(<i>d</i>) 28 cm
---------------------	--------------------

Sol. Sides of the triangle are 35 cm, 54 cm and 61 cm

$$s = \frac{35 + 54 + 61}{2} = 75 \text{ cm}$$
Area of $\Delta = \sqrt{75(75 - 35)(75 - 54)(75 - 61)}$

$$= \sqrt{75 \times 40 \times 21 \times 14}$$

$$= \sqrt{5 \times 5 \times 3 \times 2 \times 2 \times 2 \times 5 \times 3 \times 7 \times 7 \times 2}$$

$$= 5 \times 3 \times 2 \times 2 \times 7 \sqrt{5} = 420\sqrt{5} \text{ cm}^2$$

Now, longest altitude will be the perpendicular on the smallest side of the triangle from the opposite vertex.

$$\therefore \text{ Length of longest altitude} = \frac{2(\text{Area of } \Delta)}{35}$$
$$= \frac{2 \times 420\sqrt{5}}{35} = 24\sqrt{5} \text{ cm}$$

Hence, (c) is the correct answer.

8. The area of an isosceles triangle having base 2 cm and length of its equal sides 4 cm is

(a) $\sqrt{15}$ cm ²	(b) $\sqrt{\frac{15}{2}}$ cm ²
(c) $2\sqrt{15}$ cm ²	(<i>d</i>) $4\sqrt{15}$ cm ²

 $s = \frac{4+4+2}{2} = 5 \text{ cm}$

Sol. Here,

Area of
$$\Delta = \sqrt{5(5-2)(5-4)(5-4)}$$

= $\sqrt{5 \times 3 \times 1 \times 1} = \sqrt{15}$ cm²

Hence, (*a*) is the correct answer.

9. The edge of a triangular board are 6 cm, 8 cm and 10 cm. The cost of painting it at the rate of 9 paise per cm² is

(a) ₹2.00 (b) ₹2.16 (c) ₹2.48 (d) ₹3.00 Sol. Here, $2s = 6 + 8 + 10 = 24 \Rightarrow s = 24 \div 2 = 12$ cm

Area of
$$\Delta = \sqrt{12(12-6)(12-8)(12-10)}$$

= $\sqrt{2 \times 6 \times 6 \times 4 \times 2} = 2 \times 6 \times 2 = 24 \text{ cm}^2$

Cost of painting at the rate of 9 paise per cm² = $\mathbf{\xi}$ (24 × 0.09) = $\mathbf{\xi}$ 2.16 Hence, (*b*) is the correct answer.

Write whether the following statements are True or False. Justify your answer.

1. The area of a triangle with base 4 cm and height 6 cm is 24 cm^2 .

- Area of $\Delta = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 4 \times 6 = 12 \text{cm}^2$ Sol. Hence, the given statement is false.
 - 2. The area of \triangle ABC is 8 cm² in which AB = AC = 4 cm and \angle A = 90°.

Sol. Area of
$$\Delta = \frac{1}{2} \times \text{base} \times \text{height}$$

 $= \frac{1}{2} \times 4 \times 4 = 8 \text{ cm}^2$
Hence, the given statement is true.

Hence, the given statement is true.

- 3. The area of the isosceles triangle is $\frac{5}{4}\sqrt{11}$ cm² if the perimeter 11 is and the base is 5 cm.
- Sol. Let the equal sides of the isosceles triangle be 'a' and base of the triangle be '*b*'.

Perimeter of
$$\Delta = 5 + a + a = 11$$

 $\Rightarrow \qquad 2a = 11 - 5 = 6; a = 6 \div 2 = 3 \text{ cm}$
Area of isosceles $\Delta = \frac{b}{4}\sqrt{4a^2 - b^2} = \frac{5}{4}\sqrt{4(3)^2 - 5^2}$
 $= \frac{5}{4}\sqrt{11} \text{ cm}^2$

Hence the given statement is true.

4. The area of the equilateral triangle is $20\sqrt{3}$ cm² whose each side is 8 cm.

Sol. Area of equilateral
$$\Delta = \frac{\sqrt{3}}{4} (\text{side})^2$$

$$=\frac{\sqrt{3}}{4}(8)^2 = \frac{\sqrt{3}}{4} \times 64 = 16\sqrt{3} \text{ cm}^2$$

Hence, the given statement is false.

- 5. If the side of a rhombus is 10 cm and one diagonal is 16 cm, the area of the rhombus 96 cm².
- **Sol.** Let ABCD be the rhombus whose one diagonal AC is 16 cm. Each side of rhombus is 10 cm.

We know that diagonal of a rhombus bisect each other at right angles, so

OA = OC = 8 cm and OB = OD.In ΔAOB, we have ∠AOB = 90° $\therefore AB^2 = OA^2 + OB^2$ $\Rightarrow OB^2 = AB^2 - OA^2$ $= (10)^2 - 8^2 = 100 - 64 = 36$ $\therefore OB = +\sqrt{36} = 6 \text{ cm}$ $\therefore DB = 2(OB) = 2 \times 6 = 12 \text{ cm}$

Hence, area of rhombus = $\frac{1}{2} \times \text{Product of diagonals}$ = $\frac{1}{2} \times 16 \times 12 = 96 \text{ cm}^2$

Hence, the given statement is true.

- **6.** The base and the corresponding altitude of a parallelogram are 10 cm and 3.5 cm respectively. The area of the parallelogram is 30 cm².
- **Sol.** The base of the parallelogram is 10 cm and the corresponding altitude is 3.5 cm.

Area of $||gm| = base \times corresponding altitude$ = 10 cm × 3.5 cm = 35 cm².

Hence, the given statement is false.

- 7. The area of a regular hexagon of side 'a' is the sum of the areas of the five equilateral triangles with side *a*.
- **Sol.** We see a regular hexagon is divided into six equilateral triangles. So, the area of a regular hexagon of side '*a*' is the sum of the areas of the six equilateral triangles with side *a*.

Hence, the given statement that the area of a regular hexagon of side '*a*' is the sum of the areas of the five equilateral triangles with side *a* is false.

8. The cost of levelling the ground in the form of a triangle having the sides 51 m, 37 m and 20 m at the rate of ₹ 3 per m² is ₹ 918.

Sol. We have

$$2s = 51 \text{ m} + 37 \text{ m} + 20 \text{ m} = 108 \text{ m}$$

$$s = 108 \div 2 = 54 \text{ m}$$
Area of $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{54(54-51)(54-37)(54-20)}$$

= $\sqrt{54\times3\times17\times34}$
= $\sqrt{3\times3\times3\times2\times3\times17\times17\times2}$
= $3\times3\times17\times2$ = 306 m²

Cost of levelling the ground = \gtrless (306 × 3) = \gtrless 918 Hence, the given statement is true.

- **9.** In a triangle, the sides are given as 11 cm, 12 cm and 13 cm. The length of the altitude is 10.25 cm corresponding to the side having length 12 cm.
- **Sol.** We have the length of the altitude corresponding to the side having length 12 cm.

$$2s = 11 \text{ cm} + 12 \text{ cm} + 13 \text{ cm} = 36 \text{ cm}$$

$$s = 36 \div 2 = 18 \text{ cm}$$
Area of $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{18(18-11)(18-12)(18-13)}$$

$$= \sqrt{18 \times 7 \times 6 \times 5} = \sqrt{2 \times 3 \times 3 \times 7 \times 2 \times 3 \times 5}$$

$$= 2 \times 3\sqrt{105} = 6\sqrt{105} \text{ cm}^2$$
Length of altitude $= \frac{2 \text{ Area of } \Delta}{\text{Base}} = \frac{2 \times 6\sqrt{105}}{12}$

$$= \sqrt{105} = 10.25 \text{ cm}$$
Hence, the given statement is true

Hence, the given statement is true.

1. Find the cost of laying grass in a triangular field of sides 50 m, 65 m and 65 m at the rate of ₹ 7 per m².

Sol. We have, 2s = 50 m + 65 m + 65 m = 180 m $\Rightarrow \qquad s = 180 \div 2 = 90 \text{ m}$ Area of $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{90(90-50)(90-65)(90-65)}$

$$= \sqrt{90 \times 40 \times 25 \times 25} = 60 \times 25$$
$$= 1500 \,\mathrm{m}^2$$

Cost of laying grass at the rate of $\overline{\mathbf{e}}7$ per m² = $\overline{\mathbf{e}}(1500 \times 7) = \overline{\mathbf{e}}10,500$

- 2. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 13 m, 14 m, and 15 m. The advertisement yield an earning of ₹ 2000 per m² a year. A company hired one of its walls for 6 months. How much rent did it pay?
- **Sol.** The sides of triangular side walls of a flyover which have been used for advertisements are 13 m, 14 m, 15 m.

$$s = \frac{13 + 14 + 15}{2} = \frac{42}{2} = 21 \text{ m}$$

= $\sqrt{21(21 - 13)(21 - 14)(21 - 15)}$
= $\sqrt{21 \times 8 \times 7 \times 6}$
= $\sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 7 \times 3 \times 2}$
= $7 \times 3 \times 2 \times 2 = 84 \text{ m}^2$

It is given that the advertisement yield an earning of \mathbf{E} 2,000 per m² a year.

 $\therefore \quad \text{Rent for 1 } \text{m}^2 \text{ for 1 } \text{year} = ₹ 2000$

So, rent for 1 m² for 6 months or $\frac{1}{2}$ year = $\overline{\langle} (\frac{1}{2} \times 2000) = \overline{\langle} 1,000$.

- $\therefore \text{ Rent for } 84 \text{ m}^2 \text{ for } 6 \text{ months} = \texttt{P}(1000 \times 84) = \texttt{P} \texttt{84,000}.$
- **3.** From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are 14 cm, 10 cm and 6 cm. Find the area of the triangle.
- **Sol.** Let ABC be an equilateral triangle, O be the interior point and OQ, OR and OC are the perpendiculars drawn from point O. Let the sides of an equilateral triangle be *a* m.

Area of $\triangle OAB = \frac{1}{2} \times AB \times OP$

А

[:: Area of a triangle =
$$\frac{1}{2} \times (base \times height)$$
]

$$= \frac{1}{2} \times a \times 14 = 7a \operatorname{cm}^2 \qquad \dots (1)$$

Area of
$$\triangle OBC = \frac{1}{2} \times BC \times OQ = \frac{1}{2} \times a \times 10$$

= 5a cm² ... (2)

... (4)

...

 \Rightarrow

 \Rightarrow

Area of
$$\triangle OAC$$
 = $\frac{1}{2} \times AC \times OR = \frac{1}{2} \times a \times 6$
= $3a \text{ cm}^2$...(3)
Area of an equilateral $\triangle ABC$
= Area of $(\triangle OAB + \triangle OBC + \triangle OAC)$
= $(7a + 5a + 3a) \text{ cm}^2$
= $15a \text{ cm}^2$...(4)

We have, semi-perimeter
$$s = \frac{a+a+a}{2}$$

$$\Rightarrow \qquad s = \frac{3a}{2} \mathrm{cm}$$

:. Area of an equilateral $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$ [By Heron's formula] 3a(3a)(3a)(3a)

$$= \sqrt{\frac{3a}{2}} \left(\frac{3a}{2} - a\right) \left(\frac{3a}{2} - a\right) \left(\frac{3a}{2} - a\right)$$
$$= \sqrt{\frac{3a}{2}} \times \frac{a}{2} \times \frac{a}{2} \times \frac{a}{2}$$
$$= \frac{\sqrt{3}}{4} a^{2} \qquad \dots (5)$$

From equations (4) and (5), we get

$$\frac{\sqrt{3}}{4}a^2 = 15a$$
$$a = \frac{15 \times 4}{\sqrt{3}} = \frac{60}{\sqrt{3}}$$
$$a = \frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 20\sqrt{3} \text{ cm}$$

On putting $a = 20\sqrt{3}$ in equation (5), we get

Area of
$$\triangle ABC = \frac{\sqrt{3}}{4} (20\sqrt{3})^2 = \frac{\sqrt{3}}{4} \times 400 \times 3 = 300\sqrt{3} \text{ cm}^2$$

Hence, the area of an equilateral triangle is $300\sqrt{3}$ cm²

- 4. The perimeter of an isosceles triangle is 32 cm. The ratio of the equal side to its base is 3 : 2. Find the area of the triangle.
- Sol. As the sides of the equal side to the base of an isosceles triangle is 3 : 2, so let the sides of an isosceles triangle be 3x, 3x and 2x. Now, perimeter of triangle = 3x + 3x + 2x = 8xGiven perimeter of the triangle = 32 m $\therefore 8x = 32; x = 32 \div 8 = 4$

So, the sides of the isosceles triangle are (3×4) cm, (3×4) cm, (2×4) cm *i.e.*, 12 cm, 12 cm and 8 cm

$$\therefore \qquad s = \frac{12 + 12 + 8}{2} = \frac{32}{2} = 16 \text{ cm}$$
$$= \sqrt{16(16 - 12)(16 - 12)(16 - 8)}$$
$$= \sqrt{16 \times 4 \times 4 \times 8} = \sqrt{4 \times 4 \times 4 \times 4 \times 4 \times 2}$$
$$= 4 \times 4 \times 2\sqrt{2} = 32\sqrt{2} \text{ cm}^2$$

5. Find the area of a parallelogram given in the figure. Also find the length of the altitude from vertex A on the side DC.

Sol. Area of parallelogram ABCD = 2 (Area of \triangle BCD) ... (1) Now, the sides of \triangle BCD are

a = 12 cm, b = 17 cm. and c = 25 cm.

From equation (1), we get

Area of parallelogram ABCD = $2 \times 90 = 180 \text{ cm}^2$

Let the altitude of parallelogram be *h*.

Also, area of parallelogram $ABCD = Base \times Altitude$

$$\Rightarrow$$
 180 = DC × h

$$\Rightarrow$$
 180 = 12 × h

 $\Rightarrow \qquad h = \frac{180}{12} = 15 \text{ cm}$

Hence, the area of parallelogram is 180 cm^2 and the length of altitude is 15 cm.

- 6. A field in the form of parallelogram has sides 60 m and 40 m and one of its diagonals is 80 m long. Find the area of parallelogram.
- Sol. Let the field be ABCD.

Area of parallelogram ABCD = $2 \times 1161.895 = 2323.79 \text{ m}^2$

- 7. The perimeter of a triangular field is 420 m and its sides are in the ratio 6 : 7 : 8. Find the area of the triangular field.
- **Sol.** Suppose that the sides in metres are 6x, 7x and 8x. Now 6r + 7r + 8r = Perimeter = 420

Now,
$$6x + 7x + 8x - Perimeter - 420$$

⇒ $21x = 420$
⇒ $x = \frac{420}{21}$
⇒ $x = 20$
∴ The sides of the triangular field are 6 × 20 m, 7 × 20 m, 8 × 20 m, *i.e.*, 120 m, 140 m, and 160 m.
Now, $s =$ Half the perimeter of triangular field
 $= \frac{1}{2} \times 420 \text{ m} = 210 \text{ m}$

Using Heron's formula,

Area of the triangular field =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\sqrt{210(210-120)(210-140)(210-160)}$

i.e.,

$$= \sqrt{210 \times 90 \times 70 \times 50}$$

= $\sqrt{66150000} = 8133.265 \text{ m}^2$

Hence, the area of the triangular field = 8133.265 m^2 .

- 8. The sides of a quadrilateral ABCD are 6 cm, 8 cm, 12 cm and 14 cm (taken in order) respectively, and the angle between the first two sides is a right angle. Find its area.
- Sol. We have to find the area of quadrilateral ABCD. ABC is a right triangle.
 - : By Pythagoras theorem, we have

9. A rhombus shaped sheet with perimeter 40 cm and one diagonal 12 cm, is painted on both sides at the rate of ₹ 5 per cm². Find the cost of painting.

$$= \frac{1}{2} \times 19 \text{ m} \times 12 \text{ m} = \frac{1}{2} \times 228 \text{ m}^2 = 114 \text{ m}^2$$

- 1. How much paper of each shade is needed to make a kite a kite given in the figure, in which ABCD is a square with diagonal 44 cm?
- **Sol.** Each diagonal of square = 44 cm and as B diagonals of a square bisect each other at right angles

:. Area of square ABCD
=
$$2(\text{area of } \Delta ABC)$$

$$=2(\frac{1}{2} \times 44 \times 22) = 2(44 \times 11)$$

= 968 cm²

... Paper of Red shade needed to make the kite

 $= \frac{1}{4} (968 \,\mathrm{cm}^2) = 242 \,\mathrm{cm}^2$

Paper of yellow shade needed to make the kite

 $= (242 + 242) \text{ cm}^2 = 484 \text{ cm}^2$

Let us find the area of a triangle with sides 20 cm, 20 cm and 14 cm which is at the bottom of the square ABCD. Now, semiperimeter

$$s = \frac{20 + 20 + 14}{2} = \frac{54}{2} = 27 \text{ cm}$$
Area of $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{27(27 - 20)(27 - 20)(27 - 14)}$$

$$= \sqrt{27 \times 7 \times 7 \times 13} = 21\sqrt{39}$$

$$= 21 \times 6.245 = 131.15 \text{ cm}^2$$

Paper of Green shade needed to make the kite

 $=(242 + 131.15) \text{ cm}^2 = 373.15 \text{ cm}^2$

- **2.** The perimeter of a triangle is 50 cm. One side of a triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle.
- Sol. Let the smaller side of the triangle be x cm. Therefore, the second side will be (x + 4) cm, and third side is (2x 6) cm. Now, perimeter of triangle = x + (x + 4) + (2x - 6)

ow, perimeter of triangle =
$$x + (x + 4) + (2x - 6)$$

= $(4x - 2)$ cm

 \Rightarrow

Also, perimeter of triangle = 50 cm. $4x = 52; x = 52 \div 4 = 13$ Therefore, the three sides are 13 cm, 17 cm, 20 cm

$$s = \frac{13 + 17 + 20}{2} = \frac{50}{2} = 25 \text{ cm}$$

$$\therefore \quad \text{Area of } \Delta = \sqrt{25(25 - 13)(25 - 17)(25 - 20)}$$

$$= \sqrt{25 \times 12 \times 8 \times 5} = \sqrt{5 \times 5 \times 4 \times 3 \times 4 \times 2 \times 5}$$

$$= 5 \times 4 \times \sqrt{3 \times 2 \times 5} = 20\sqrt{30} \text{ cm}^2$$

3. The area of a trapezium is 475 cm² and height is 19 cm. Find the lengths of its two parallel sides if one side of 4 cm greater than the other.

Sol. Area of trapezium =
$$\frac{1}{2} \times (\text{Sum of the parallel sides}) \times \text{height}$$

 $\Rightarrow 475 = \frac{1}{2} \times (x + x + 4) \times 19 \text{ cm}$
 $\Rightarrow 2x + 4 = \frac{950}{19} = 50$

$$2x = 50 - 4 = 46$$
; $x = 46 \div 2 = 23$

Hence, the length of two parallel sides are 23cm and (23 + 4) cm i.e 23 cm and 27 cm.

- **4.** A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in front. According to the laws, a minimum of 3 m, wide space should be left in the front and back each, 2 m wide space on each of other sides. Find the largest area where house can be constructed.
- Sol. The length of the rectangular plot = 40 m and the breadth of the plot = 15 m.As a minimum of 3 m wide space should be left in the front and back 2 m wide space each of other side, so the largest area where the house can be constructed

= [40-2(3)] [15-2(2)] = 34 × 11 = 374 m²

- 5. A field in the shape of a trapezium having parallel sides 90 m and 30 m These sides meet the third side at right angles. The length of the fourth side is 100 m. If it costs ₹ 4 to plough 1 m² of the field, find the total cost of ploughing the field.
- Sol. The two parallel sides are AB = 90 m and CD = 30 m. $DM \perp AB$ Now, MB = AB - AM = 90 m - 30 m = 60 m.

$$= \frac{1}{2} \times 120 \times 80 = 4800 \,\mathrm{m}^2$$

Total cost of ploughing the field at the rate of $\mathbf{\overline{\xi}} 4$ per m² = $\mathbf{\overline{\xi}} (4800 \times 4)$ = $\mathbf{\overline{\xi}} 19,200$.

- 6. In given figure, $\triangle ABC$ has sides AB = 7.5 cm, AC = 6.5 cm and BC = 7 cm. On base BC a parallelogram DBCE of same area as that of $\triangle ABC$ is constructed. Find the height DF of the parallelogram.
- Sol. Sides of triangle ABC are 7.5 cm, 7cm and 6.5 cm. The semi-perimeter of \triangle ABC

$$s = \frac{7.5 + 7 + 6.5}{2} = \frac{21}{2} = 10.5 \text{ cm}$$
Area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{10.5(10.5 - 7.5)(10.5 - 7)(10.5 - 6.5)}$$

$$= \sqrt{10.5 \times 3 \times 3.5 \times 4} = \sqrt{31.5 \times 14}$$

$$= \sqrt{441} = 21 \text{ cm}^2$$

17

Now, as on base BC a parallelogram DBCE of same area as that of \triangle ABC is constructed. Therefore, area of || gm. DBCE = 21 cm² Also, area of || gm \triangle BCE = BC × DF

$$\begin{array}{rcl} \therefore & BC \times DF &=& 21 \ cm^2 \\ \Rightarrow & 7 \times DF &=& 21 \ cm^2 \\ \Rightarrow & DF &=& 21 \ cm^2 \div 7 \ cm &= 3 \ cm \end{array}$$

Hence, the height DF of the parallelogram = 3 cm.

7. The dimensions of a rectangle ABCD are 51 cm \times 25 cm. A trapezium with its parallel sides QC and PD in the ratio 9 : 8, is cut off form the rectangle as shown in the given figure. If the area of the trapezium PQCD

is
$$\frac{5}{6}$$
 th part of the area of the rectangle, find the lengths QC and PD.

Sol. ABCD is a rectangle in which AB = 51cm and BC = 25cm. Since parallel sides QC and PD are in the ratio 9 : 8, so let QC = 9x and PD = 8x.

Now, area of trapezium PQCD = $\frac{1}{2} \times (9x + 8x) \times 25 \text{ cm}^2$

$$=\frac{1}{2}\times 17x\times 25$$

Area of rectangle ABCD = $BC \times CD = 51 \times 25$

It is given that area of trapezium PQCD = $\frac{5}{6}$ × Area of rectangle ABCD.

$$\therefore \qquad \frac{1}{2} \times 17x \times 25 = \frac{5}{6} \times 51 \times 25$$
$$\Rightarrow \qquad x = \frac{5}{6} \times 51 \times 25 \times 2 \times \frac{1}{17 \times 25} = 5$$

Hence, the length $QC = 9x = 9 \times 5 = 45$ cm. and the length $PD = 8x = 8 \times 5 = 40$ cm.

8. A design is made on a rectangular tile of dimensions $50 \text{ cm} \times 70 \text{ cm}$ as shown in the given figure. The design shows 8 triangles, each of sides 26 cm, 17 cm and 25 cm. Find the total area of the design and the remaining area of the tile.

Sol. Given, the dimensions of rectangular tile are $50 \text{ cm} \times 70 \text{ cm}$ \therefore Area of rectangular tile = $50 \times 70 = 3500 \text{ cm}^2$

The sides of a design of one triangle be a = 25 cm, b = 17 cm and c = 26 cm.

$$s = \frac{a+b+c}{2}$$
$$= \frac{25+17+26}{2} = \frac{68}{2} = 34 \text{ cm}$$

:.

Area of
$$\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$$

[By Heron's formula]

$$= \sqrt{34 \times 9 \times 17 \times 8}$$

$$= \sqrt{17 \times 2 \times 3 \times 3 \times 17 \times 2 \times 2 \times 2}$$

$$= 17 \times 3 \times 2 \times 2$$

$$= 204 \text{ cm}^2$$

Hence, the total area of the design is 1632 cm^2 and the remaining area of the tile is 1868 cm^2 .