EXERCISE 2.1

Choose the correct answer from the given four options in the following questions:

Q1. If one of the zeroes of the quadratic polynomial $(k-1)x^2 + kx + 1$ is -3, then the value of *k* is (a) 4/3 (b) -4/3(c) 2/3(d) -2/3**Sol.** (*a*): **Main concept:** If *a* is root of a polynomial f(x), then f(a) = 0. Let $f(x) = (k-1)x^2 + kx + 1$ As -3 is a zero of f(x), then $\begin{array}{l} f(-3) = 0 \\ (k-1) \ (-3)^2 + k(-3) + 1 = 0 \end{array}$ \Rightarrow 9k - 9 - 3k + 1 = 0 \Rightarrow 9k - 3k = +9 - 1 \Rightarrow 6k = 8 \Rightarrow k = 4/3 \Rightarrow Q2. A quadratic polynomial, whose zeroes are – 3 and 4, is (a) $x^2 - x - 12$ (b) $x^2 + x + 12$ (c) $\frac{x^2}{2} - \frac{x}{2} - 6$ (d) $2x^2 + 2x - 24$ Sol. (c): Main concept: Required quadratic polynomial $= x^2 - (\alpha + \beta) + \alpha\beta$ Here, $\alpha = -3$ and $\beta = 4$... $\alpha + \beta = -3 + 4 = 1$ $\alpha \cdot \beta = -3 \times 4 = -12$ and *.*.. The quadratic polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$ $= x^2 - 1x - 12$ $= \frac{x^2}{2} - \frac{x}{2} - \frac{12}{2}$ $=\frac{x^2}{2}-\frac{x}{2}-6$ **Q3.** If the zeroes of the quadratic polynomial $x^2 + (a + 1)x + b$ are 2 and -3, then

(a) a = -7, b = -1(b) a = 5, b = -1(c) a = 2, b = -6(d) a = 0, b = -6Sol. (d): Main concept: If a is zero of a polynomial f(x), then f(a) = 0.

Let $f(x) = x^2 + (a+1)x + b$

As 2, and (-3) are zeroes of polynomial $f(x) = x^2 + (a + 1)x + b$, then and f(2) = 0f(-3) = 0 $\Rightarrow (2)^{2} + (a+1)(2) + b = 0$ $\Rightarrow 4 + 2a + 2 + b = 0$ $\Rightarrow 2a + b = -6 \dots (i)$ $\Rightarrow (-3)^{2} + (a+1)(-3) + b = 0$ $\Rightarrow 9 - 3a - 3 + b = 0$ $\Rightarrow -3a + b = -6$ $\Rightarrow 3a - b = 6$ 3a - b = 6 ...(*ii*) 5a = 0[Adding (*i*) and (*ii*)] a = 0 \Rightarrow But, 2a + b = -6[From (*i*)] 2(0) + b = -6 \Rightarrow \Rightarrow b = -6Hence, a = 0 and b = -6 verifies option (*d*). Q4. The number of polynomials having zeroes as -2 and 5 is (*a*) 1 (*b*) 2 (c) 3 (*d*) more than 3 **Sol.** (*d*): We know that if we divide or multiply a polynomial by any constant (real number), then the zeroes of polynomial remains same. Here, $\alpha = -2$ and $\beta = +5$ $\alpha + \beta = -2 + 5 = 3$ and $\alpha \cdot \beta = -2 \times 5 = -10$ *.*.. So, required polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$ $= x^2 - 3x - 10$ If we multiply this polynomial by any real number let 5 and 2, we get $5x^2 - 15x - 50$ $2x^2 - 6x - 20$ and which are different polynomials having same zeroes – 2 and 5. So, we can obtain so many (infinite polynomials) from two given zeroes. **Q5.** Given that one of the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ is zero, the product of the other two zeroes is

(a)
$$\frac{-c}{a}$$
 (b) $\frac{c}{a}$ (c) 0 (d) $\frac{-b}{a}$
Sol. (b): Let $f(x) = ax^3 + bx^2 + cx + d$
If α , β , γ are the zeroes of $f(x)$, then
 $\boxed{\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}}$
One root is zero (Given) so, $\alpha = 0$.
 $\Rightarrow \qquad \beta\gamma = \frac{c}{a}$

Q6. If one of the zeroes of the cubic polynomial $x^3 + ax^2 + bx + c$ is -1, then the product of other two zeroes is

(a)
$$b-a+1$$
 (b) $b-a-1$ (c) $a-b+1$ (d) $a-b-1$

Sol. (*a*): Let $f(x) = x^3 + ax^2 + bx + c$ \therefore Zero of f(x) is -1 so f(-1) = 0 $(-1)^3 + a(-1)^2 + b(-1) + c = 0$ \Rightarrow -1 + a - b + c = 0 \Rightarrow a - b + c = 1 \Rightarrow c = 1 + b - a \Rightarrow $\alpha \cdot \beta \cdot \gamma = \frac{-d}{a}$ $[\because c = b, \quad d = c]$ Now, $-1 \beta \gamma = \frac{-c}{1}$ \Rightarrow $\beta \gamma = c$ \Rightarrow $\beta \gamma = 1 + b - a$ \Rightarrow **Q7.** The zeroes of quadratic polynomial $x^2 + 99x + 127$ are (a) both positive (b) both negative (c) one positive and one negative (d) both are equal **Sol.** (*b*): Let $f(x) = x^2 + 99x + 127$ $b^2 - 4ac = (99)^2 - 4(1)$ 127 Now. (a = 1, b = 99, c = 127)Now, $b^{2} - 4ac = (99)^{2} - 4(1)^{127}$ $\Rightarrow \qquad b^{2} - 4ac = 9801 - 508$ $\Rightarrow \qquad \sqrt{b^{2} - 4ac} = \sqrt{9293}$ $\Rightarrow \qquad \sqrt{b^{2} - 4ac} = 96.4$ So, zeroes of f(x), $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $\Rightarrow \qquad x = \frac{-99 \pm 96.4}{2 \times 1}$ \Rightarrow Both roots will be negative as 99 > 96.4. **Q8.** The zeroes of the quadratic polynomial $x^2 + kx + k$ where $k \neq 0$ (*a*) cannot both be positive (b) cannot both be negative (c) are always unequal (*d*) are always equal **Sol.** (*a*): Let $f(x) = x^2 + kx + k$ For zeroes of f(x), f(x) = 0 $x^{2} + kx + k = 0$ \Rightarrow $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-k \pm \sqrt{k^2 - 4 \cdot k}}{2} = \frac{-k \pm \sqrt{k(k-4)}}{2}$ But, \Rightarrow For real roots, $b^2 - 4ac > 0$ k(k-4) > 0 \Rightarrow $(k \neq 0)$

Let k = -4

(any point on number line) Let k = 8 (any point on number line)

$$x = \frac{-4 \pm \sqrt{-4(-4-4)}}{2} = \frac{-4 \pm \sqrt{32}}{2}$$
$$= \frac{-4 \pm 4\sqrt{2}}{2} = \frac{4[-1 \pm \sqrt{2}]}{2}$$
$$x = 2[-1 \pm \sqrt{2}]$$

$$x_1=2[-1+\sqrt{2}]$$
, which is positive
 $x_2=2[-1-\sqrt{2}]$, which is negative

$$x = \frac{-8 \pm \sqrt{8(8-4)}}{2}$$

$$x = \frac{-8 \pm \sqrt{8 \times 4}}{2}$$

$$x = \frac{-8 \pm 4\sqrt{2}}{2}$$

$$x = \frac{+4[-2 \pm \sqrt{2}]}{2}$$

$$x = 2(-2 \pm \sqrt{2})$$

$$x_1 = 2[-2 + \sqrt{2}]$$
, which is negative
 $x_2 = 2[-2 - \sqrt{2}]$, which is negative

So, the roots cannot be both positive.

Q9. If the zeroes of the quadratic polynomial

 $ax^2 + bx + c$, where, $c \neq 0$ are equal then

- (a) *c* and *a* both have opposite signs
- (b) c and b have opposite signs
- (c) c and a have same sign
- (d) c and b have the same sign

Sol. (c): For equal roots $b^2 - 4ac = 0$ or $b^2 = 4ac$

 b^2 is always positive so 4ac must be positive or i.e., product of *a* and *c* must be positive i.e., *a* and *c* must have same sign either positive or negative. **Q10.** If one of the zeroes of a quadratic polynomial of the form $x^2 + ax + b$ is the negative of the other then it

- (a) has no linear term and the constant term is negative
- (b) has no linear term and the constant term is positive
- (c) can have a linear term but the constant term is negative.
- (*d*) can have a linear term but the constant term is positive.

Sol. (a): Let $f(x) = x^2 + ax + b$ and α , β are the roots of it. Then, $\beta = -\alpha$ (Given) $\alpha + \beta = \frac{-b}{a}$ and $\alpha \cdot \beta = \frac{c}{a}$ $\Rightarrow \quad \alpha - \alpha = \frac{-a}{1}$ $\alpha(-\alpha) = \frac{b}{1}$ $\Rightarrow \quad -a = 0$ $-\alpha^2 = b$ $\Rightarrow \quad a = 0$ $\Rightarrow \quad b < 0$ or b is negative So, $f(x) = x^2 + b$ shows that it has no linear term.

Q11. Which of the following is not the graph of a quadratic polynomial?

Sol. (*d*): Graph '*d*' intersect at three points on X-axis so the roots of polynomial of graph is three, so it is cubic polynomial. Other graphs are of quadratic polynomial. Graphs *a*, *b* have no real zeroes.

EXERCISE 2.2

Q1. Answer the following and justify.

- (*i*) Can $x^2 1$ be the quotient on division of $x^6 + 2x^3 + x 1$ by a polynomial in *x* of degree 5 ?
- (*ii*) What will the quotient and remainder be on division of $ax^2 + bx + c$ by $px^3 + qx^2 + rx + s$, $p \neq 0$?
- (*iii*) If on division of a polynomial p(x) by a polynomial g(x), the quotient is zero what is the relation between the degrees of p(x) and g(x)?
- (*iv*) If on division of a non-zero polynomial *p*(*x*) by a polynomial *g*(*x*), the remainder is zero, what is the relation between the degrees of *p*(*x*) and *g*(*x*)?
- (v) Can the quadratic polynomial $x^2 + kx + k$ have equal zeroes for some odd integer k > 1?
- **Sol.** (*i*): Let the divisor of degree 5 is $g(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + 1$ Dividend = $p(x) = x^6 + 2x^3 + x - 1$,

 $q(x) = x^2 - 1$ and let remainder be r(x)

So, by Euclid's division algorithm p(x) = g(x) q(x) + r(x) $[\deg p(x) \text{ is } 6] = [g(x) \text{ of } \deg 5] [q(x) \text{ degree } 2] + r(x) \text{ of } \text{ degree } \text{ less}$ than 5 degree p(x) = degree g(x) + degree q(x) + degree r(x)6 = 5 + 2 + anySo, degree of q(x) can never be 2 it may be only one. So, $(x^2 - 1)$ can never be the quotient. (*ii*) p(x) (dividend) = $ax^2 + bx + c$ g(x) (divisor) = $px^{3} + qx^{2} + r(x) + s$ As the degree of dividend is always greater than divisor but here degree p(x) < degree g(x). When we divide p(x) by g(x), quotient will be zero and remainder will be p(x). (*iii*) The dividend = p(x), divisor g(x)quotient q(x) = 0remainder = r(x)Here, degree of divisor g(x) is more than degree of dividend. (*iv*) When p(x) is divided by g(x), the remainder is zero so the g(x)is a factor of p(x) and degree of g(x) will be less than or equal to the degree of p(x) or degree $g(x) \leq$ degree p(x). (v) Let $p(x) = x^2 + kx + k$ $b^2 - 4ac = 0$ For equal zeroes, $(k)^2 - 4(1)(k) = 0$ \Rightarrow $k^2 - 4k = 0$ \Rightarrow k(k-4) = 0 \Rightarrow k = 0 or k = 4 \rightarrow But k > 1 so k = 4The given quadratic polynomial has equal zeroes at k = 4. Q2. Are the following statements true or false? Justify your answers. (*i*) If the zeroes of a quadratic polynomial $ax^2 + bx + c$ are both positive, then *a*, *b* and *c* have the same sign. (ii) If the graph of polynomial intersects the X-axis at only one points it cannot be a quadratic polynomial.

- (*iii*) If the graph of a polynomial intersects the X-axis at exactly two points, it need not be a quadratic polynomial.
- (*iv*) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
- (*v*) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of polynomial have the same sign.

- (*vi*) If all three zeroes of a cubic polynomial $x^3 + ax^2 bx + c$ are positive, then at least one of *a*, *b*, and *c* is non-negative.
- (vii) The only value of k for which the quadratic polynomial $kx^2 + x + k$ has equal zeroes is 1/2.
- **Sol.** (*i*): **False:** Let α and β be the roots of the quadratic polynomial. If α and β are positive then $\alpha + \beta = \frac{-b}{a}$ it shows that $\frac{-b}{a}$ is negative but sum of two positive numbers (α , β) must be +ive i.e. either *b* or *a* must be negative. So *a*, *b* and *c* will have different signs.
 - (ii) False: The given statement is false, because when two zeroes of a quadratic polynomial are equal, then two intersecting points coincide to become one point.
 - (iii) True: If a polynomial of degree more than two has two real zeroes and other zeroes are not real or are imaginary, then graph of the polynomial will intersect at two points on x-axis.

(*iv*) **True:** Let
$$\beta = 0$$
, $\gamma = 0$
 $f(x) = (x - \alpha) (x - \beta) (x - \gamma)$
 $= (x - \alpha) x \cdot x$
 $\Rightarrow f(x) = x^3 - \alpha x^2$
which has no linear (coefficient of x) and

has no linear (coefficient of *x*) and constant terms.

(v) **True:** α , β , and γ are all (–)ive for cubic polynomial $ax^3 + bx^2 + cx + d$.

$$\alpha + \beta + \gamma = \frac{-b}{a} \qquad \dots (i)$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} \qquad \dots (ii)$$
$$\alpha\beta\gamma = \frac{-d}{a} \qquad \dots (iii)$$

$$\beta \gamma = \frac{-d}{a} \qquad \dots (iii)$$

 $\therefore \alpha$, β , γ are all negative so,

 \Rightarrow \Rightarrow

 \Rightarrow

$$\alpha + \beta + \gamma = -x$$
 (Any negative number)
$$\frac{-b}{a} = -x$$
 [From (i)]
$$\frac{b}{a} = x$$

So, *a*, *b*, have same sign and product of any two zeroes will be positive.

 $\alpha\beta + \beta\gamma + \gamma\alpha = + \gamma$ So, (Any positive number) $\frac{+c}{a} = +y$ \Rightarrow [From (*ii*)] \Rightarrow

c and a have same sign

$$\alpha\beta\gamma = -z$$
 (Any negative number)
 $\frac{-d}{a} = -z$ [From (*ii*)]

 $\frac{d}{d} = z$ \Rightarrow So, *d* and *a* will have same sign. Hence, signs of *b*, *c*, *d* are same as of *a*. So, signs of *a*, *b*, *c*, *d* will be same either positive or negative. (vi) True: As all zeroes of cubic polynomial are positive $f(x) = x^3 + ax^2 - bx + c$ Let $\alpha + \beta + \gamma = +$ ive say + x*.*.. $\frac{-b}{a} = x$ \Rightarrow *a* and *b* has opposite signs ...(*i*) \Rightarrow $\alpha\beta + \beta\gamma + \gamma\alpha = + y$ $\frac{c}{-} = y$ \Rightarrow So, signs of *a* and *c* are same. ...(*ii*) $\alpha\beta\gamma$ = +ive = + *z* Now, $\frac{-d}{a} = z$ \Rightarrow \Rightarrow *a* and *d* have opposite signs. [From (*i*)] From (*i*), if *a* is positive, then *b* is negative. From (*ii*) if *a* is positive, then *c* is also positive. From (*iii*) if *a* is positive, then *d* is negative. Hence, if zeroes α , β , γ of cubic polynomial are positive then out of *a*, *b*, *c* at least one is positive. (vii) False: $f(x) = kx^2 + x + k$ (a = k, b = 1, c = k)For equal roots $b^2 - 4ac = 0$ $(1)^2 - 4(k)(k) = 0$ \Rightarrow $4k^2 = 1$ \Rightarrow $k^2 = 1/4$ \Rightarrow $k = \pm \frac{1}{2}$ \Rightarrow

So, there are $\frac{1}{2}$ and $\frac{-1}{2}$ values of *k* so that the given equation has equal roots.

EXERCISE 2.3

Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and coefficients of the polynomials.

Q1. $4x^2 - 3x - 1$ Sol. Let $f(x) = 4x^2 - 3x - 1$

Splitting the middle term, we get $=4x^{2}-4x+1x-1$ = 4x(x-1) + 1(x-1)= (x - 1) (4x + 1)For f(x) = 0, we have $4x^2 - 3x - 1 = 0$ (x-1)(4x+1) = 0or $x - 1 = 0 \implies x = 1$ Either $4x + 1 = 0 \implies 4x = -1 \implies x = \frac{-1}{4}$ or \therefore The zeroes of f(x) are 1 and $\frac{-1}{4}$. Verification: $\alpha = 1$, $\beta = \frac{-1}{4}$ a = 4, b = -3 and c = -1 $\alpha + \beta = \frac{-b}{a}$ $\alpha \cdot \beta = \frac{c}{a}$... $1 - \frac{1}{4} = \frac{-(-3)}{4} \qquad \Rightarrow \qquad 1 \times \left(\frac{-1}{4}\right) = \frac{-1}{4}$ $\frac{3}{4} = \frac{3}{4} \qquad \Rightarrow \qquad \frac{-1}{4} = \frac{-1}{4}$ \Rightarrow \Rightarrow LHS = RHS LHS = RHS \Rightarrow Hence, verified Hence, verified **Q2.** $3x^2 + 4x - 4$ **Sol.** Let $f(x) = 3x^2 + 4x - 4$ For zeroes of f(x), f(x) = 0 $3x^2 + 4x - 4 = 0$ *.*.. Splitting the middle term, we get $3x^2 + 6x - 2x - 4 = 0$ 3x(x+2) - 2(x+2) = 0 \Rightarrow (x+2)(3x-2) = 0 \Rightarrow x + 2 = 0 or 3x - 2 = 0 \Rightarrow $3x = +2 \implies x = \frac{2}{3}$ x = -2 or \Rightarrow So, zeroes of f(x) are -2, and 2/3. Sum of roots = $\frac{-b}{c}$ (a = 3, b = 4, c = -4) $-2+\frac{2}{3}=\frac{-4}{3}$ \Rightarrow $\frac{-6+2}{3} = \frac{-4}{3}$ \Rightarrow

 $\frac{-4}{3} = \frac{-4}{3}$ \Rightarrow LHS = RHS \Rightarrow Hence, verified. Product of roots = $\frac{c}{c}$ $-2 \times \frac{2}{3} = \frac{-4}{3}$ \Rightarrow $\frac{-4}{3} = \frac{-4}{3}$ \Rightarrow LHS = RHS \Rightarrow Hence, verified. **Q3.** $5t^2 + 12t + 7$ **Sol.** Let $f(t) = 5t^2 + 12t + 7$ For zeroes of f(t), f(t) = 0 $5t^2 + 12t + 7 = 0$ \Rightarrow $5t^2 + 7t + 5t + 7 = 0$ \Rightarrow t(5t+7) + 1(5t+7) = 0 \Rightarrow (5t+7)(t+1) = 0 \Rightarrow 5t + 7 = 0 or (t + 1) = 0 \Rightarrow $t = \frac{-7}{5}$ or t = -1 \Rightarrow $\alpha = -\frac{7}{5} \qquad \beta = -1$ Verification: a = 5, b = 12, c = +7 $\alpha + \beta = \frac{-b}{a}$ $\alpha \cdot \beta = \frac{c}{a}$ $\Rightarrow \qquad \frac{-7}{5} - 1 = \frac{a}{-(+12)}$ $\Rightarrow \quad \left(\frac{-7}{5}\right)(-1) = \frac{7}{5}$ $\Rightarrow \qquad \frac{-7-5}{5} = \frac{-12}{5} \qquad \Rightarrow \qquad +\frac{7}{5} = \frac{7}{5}$ $\Rightarrow \qquad LHS = RH$ LHS = RHSLHS = RHS \Rightarrow Hence, verified. **O4.** $t^3 - 2t^2 - 15t$ **Sol.** Let $f(t) = t^3 - 2t^2 - 15t$ For zeroes of f(t), f(t) = 0 $t^3 - 2t^2 - 15t = 0$ \Rightarrow

 $t[t^2 - 2 \cdot t - 15] = 0$ \Rightarrow $t[t^2 - 5t + 3t - 15] = 0$ \Rightarrow t[t(t-5) + 3(t-5)] = 0 \Rightarrow t(t-5)(t+3) = 0 \Rightarrow t = 0 or t - 5 = 0 or t - 5 = 0t+3=0 \Rightarrow t = -3t = 0 or t = 5 \Rightarrow or So, zeroes of cubic polynomial are $\alpha = 0$, $\beta = 5$, $\gamma = -3$ **Verification:** $\alpha = 0$, $\beta = 5$, $\gamma = -3$ Cubic polynomial, $f(t) = t^3 - 2t^2 - 15t$, which is of the form $at^3 + bt^2 + ct + d$ where a = 1, b = -2, c = -15 and d = 0 $\alpha + \beta + \gamma = \frac{-b}{a}$ $0 + 5 - 3 = \frac{-(-2)}{1}$ 2 = 2 LHS = RHS, verified. $\alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}$ $\Rightarrow (0)(5) + (5)(-3) + (-3)(0) = \frac{-15}{1}$ $\Rightarrow 0 - 15 + 0 = -15$ $\Rightarrow -15 = -15$ $\Rightarrow LHS = RHS$ Hence, verified. \Rightarrow \Rightarrow \rightarrow Hence, verified. $\alpha \beta \gamma = \frac{-d}{a}$ $(0) (5) (-3) = \frac{-0}{1}$ \Rightarrow \Rightarrow 0 = 0LHS = RHS \Rightarrow Hence, verified. Q5. $2x^2 + \frac{7}{2}x + \frac{3}{4}$ **Sol.** Let $f(x) = 2x^2 + \frac{7}{2}x + \frac{3}{4}$ For zeroes of f(x), f(x) = 0 $2x^2 + \frac{7}{2}x + \frac{3}{4} = 0$ \Rightarrow $8x^2 + 14x + 3 = 0$ \Rightarrow [As *c* is positive (+ 3) so sum of (8×3) factors should be equal to 14] $8x^2 + 12x + 2x + 3 = 0$ \Rightarrow 4x(2x+3) + 1(2x+3) = 0 \Rightarrow (2x+3)(4x+1) = 0 \Rightarrow 2x + 3 = 04x + 1 = 0or \Rightarrow 2x = -34x = -1 \Rightarrow or

$$\Rightarrow \qquad x = \frac{-3}{2} \qquad \text{or} \qquad x = \frac{-1}{4}$$
Verification: $\alpha = \frac{-3}{2}$ and $\beta = \frac{-1}{4}$
Quadratic polynomial $f(x) = 2x^2 + \frac{7}{2}x + \frac{3}{4}$, which is of the form $ax^2 + bx + c$.
 $\therefore a = 2, \quad b = \frac{7}{2} \text{ and } c = \frac{3}{4}$
 $\alpha + \beta = \frac{-b}{a}$
 $\Rightarrow \qquad \frac{-3}{2} - \frac{1}{4} = \frac{\frac{-7}{2}}{2}$
 $\Rightarrow \qquad \frac{-7}{4} = \frac{-7}{2} \times \frac{1}{2}$
 $\Rightarrow \qquad \frac{-7}{4} = \frac{-7}{2} \times \frac{1}{2}$
 $\Rightarrow \qquad \frac{-7}{4} = \frac{-7}{4}$
 $\Rightarrow \qquad \frac{3}{8} = \frac{3}{4} \times \frac{1}{2}$
 $\Rightarrow \qquad LHS = RHS$
 $\Rightarrow \qquad LHS = RHS$

Hence, verified.

Hence, verified.

Q6.
$$4x^2 + 5\sqrt{2}x - 3$$

Sol. Let $f(x) = 4x^2 + 5\sqrt{2}x - 3$
For zeroes of $f(x)$, $f(x) = 0$
 $\Rightarrow \qquad 4x^2 + 5\sqrt{2}x - 3 = 0$
 $\Rightarrow \qquad 4x^2 + 6\sqrt{2}x - \sqrt{2}x - 3 = 0$
 $\Rightarrow \qquad 2x[2x + 3\sqrt{2}] - 1[\sqrt{2}x + 3] = 0$
 $\Rightarrow \qquad 2\sqrt{2}x[\sqrt{2}x + 3] - 1[\sqrt{2}x + 3] = 0$
 $\Rightarrow \qquad (\sqrt{2}x + 3)(2\sqrt{2}x - 1) = 0$
 $\Rightarrow \qquad \sqrt{2}x + 3 = 0 \qquad \text{or} \qquad 2\sqrt{2}x - 1 = 0$
 $\Rightarrow \qquad x = \frac{-3}{\sqrt{2}} \qquad \text{or} \qquad x = \frac{1}{2\sqrt{2}}$

Verification:

$$\alpha = \frac{-3}{\sqrt{2}}, \beta = \frac{1}{2\sqrt{2}}, a = 4, b = 5\sqrt{2}, c = -3$$

 $\alpha + \beta = \frac{-b}{a}$ $\alpha \cdot \beta = \frac{c}{a}$ $\Rightarrow \qquad \frac{-3}{\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{-5\sqrt{2}}{4} \qquad \left| \Rightarrow \qquad \left(-\frac{3}{\sqrt{2}} \right) \left(\frac{1}{2\sqrt{2}} \right) = \frac{-3}{4} \right.$ $\frac{-3}{4} = \frac{-3}{4}$ LHS = RHS $\Rightarrow \qquad \frac{-5\sqrt{2}}{4} = -\frac{5\sqrt{2}}{4}$ Hence, verified. LHS = RHS \Rightarrow Hence, verified. Q7. $2s^2 - (1 + 2\sqrt{2})s + \sqrt{2}$ **Sol.** Let $f(s) = 2s^2 - (1 + 2\sqrt{2})s + \sqrt{2}$ For zeroes of f(s), f(s) = 0 $2s^2 - (1 + 2\sqrt{2})s + \sqrt{2} = 0$ $[\because a \times c = (2\sqrt{2})]$ \Rightarrow $2s^2 - 1s - 2\sqrt{2}s + \sqrt{2} = 0$ [Open the brackets] \Rightarrow $s(2s-1) - \sqrt{2}(2s-1) = 0$ \Rightarrow $(2s-1)(s-\sqrt{2}) = 0$ 2s-1 = 0 or $s-\sqrt{2} = 0$ \Rightarrow \Rightarrow $s = \frac{1}{2}$ $s = \sqrt{2}$ or \Rightarrow Verification of the relation between α , β , *a*, *b* and *c* $\alpha = \frac{1}{2}, \quad \beta = \sqrt{2}, \quad a = 2, \quad b = -(1 + 2\sqrt{2}), \quad c = \sqrt{2}$ $\alpha + \beta = \frac{-b}{a}$ $\Rightarrow \qquad \frac{1}{2} + \sqrt{2} = \frac{+(1+2\sqrt{2})}{2}$ $\Rightarrow \qquad \frac{1}{2} + \sqrt{2} = \frac{1}{2} + \frac{2\sqrt{2}}{2}$ $\Rightarrow \qquad \frac{1}{2} + \sqrt{2} = \frac{1}{2} + \sqrt{2}$ LHS = RHS \rightarrow Hence, verified. LHS = RHS \Rightarrow Hence, verified.

Q8. $v^2 + 4\sqrt{3}v - 15$ **Sol.** Let $f(v) = v^2 + 4\sqrt{3}v - 15$

For zeroes of f(v), f(v) = 0 $v^2 + 4\sqrt{3}v - 15 = 0$ \Rightarrow $v^{2} + 5\sqrt{3}v - 1\sqrt{3}v - 15 = 0$ \Rightarrow $\begin{bmatrix} 15 = 5 \times 3 \\ = 1 \times 5 \times \sqrt{3} \times \sqrt{3} \end{bmatrix}$ $v(v+5\sqrt{3}) - \sqrt{3}(v+5\sqrt{3}) = 0$ \Rightarrow $(v+5\sqrt{3})(v-\sqrt{3}) = 0$ \Rightarrow $(v + 5\sqrt{3}) = 0$ or $(v - \sqrt{3}) = 0$ \Rightarrow $v = -5\sqrt{3}$ or $v = \sqrt{3}$ \Rightarrow Verification of relations between α , β , *a*, *b*, *c* $\alpha = -5\sqrt{3}$, $\beta = \sqrt{3}$, a = 1, $b = 4\sqrt{3}$ and c = -15 $\alpha + \beta = \frac{-b}{a}$ $\alpha \cdot \beta = \frac{c}{c}$ $\Rightarrow -5\sqrt{3} + \sqrt{3} = \frac{-4\sqrt{3}}{1}$ $\Rightarrow -4\sqrt{3} = -4\sqrt{3}$ $\Rightarrow LHS = RHS$ $\Rightarrow -5\times3 = -15$ $\Rightarrow -15 = -15$ LHS = RHS Hence, verified. Hence, verified. **Q9.** $y^2 + \frac{3}{2}\sqrt{5}y - 5$ **Sol.** Let $f(y) = y^2 + \frac{3}{2}\sqrt{5}y - 5$ For zeroes of f(y), f(y) = 0 $y^2 + \frac{3}{2}\sqrt{5}y - 5 = 0$ \Rightarrow $2y^2 + 3 \cdot \sqrt{5}y - 10 = 0$ \Rightarrow $2y^{2} + 4\sqrt{5}y - 1\sqrt{5}y - 10 = 0$ $2y(y + 2\sqrt{5}) - \sqrt{5}[y + 2\sqrt{5}] = 0$ $(y + 2\sqrt{5})(2y - \sqrt{5}) = 0$ $\begin{bmatrix} 2 \times 10 = 2 \times 2 \times 5 \\ = 2 \times 2 \times \sqrt{5} \times \sqrt{5} \\ = (4 \times 5) \end{bmatrix}$ \Rightarrow \Rightarrow \Rightarrow $2y - \sqrt{5} = 0$ $y + 2\sqrt{5} = 0$ or \Rightarrow $y = \frac{\sqrt{5}}{2}$ $y = -2\sqrt{5}$ or \Rightarrow

Verification of the relations between α , β , and *a*, *b*, *c*

$$\alpha = -2\sqrt{5}, \quad \beta = \frac{\sqrt{5}}{2}, \quad a = 1, \quad b = \frac{3}{2}\sqrt{5} \text{ and } c = -5$$

 $\alpha + \beta = \frac{-b}{c}$ $\alpha \cdot \beta = \frac{c}{2}$ $\Rightarrow (-2\sqrt{5})\left(\frac{\sqrt{5}}{2}\right) = \frac{-5}{1}$ $\Rightarrow -2\sqrt{5} + \frac{\sqrt{5}}{2} = \frac{\frac{-3}{2}\sqrt{5}}{1}$ -5 = -5LHS = RHS \Rightarrow $\Rightarrow \frac{-4\sqrt{5}+\sqrt{5}}{2} = \frac{-3}{2}\sqrt{5}$ \Rightarrow Hence, verified. $\Rightarrow \qquad \frac{-3\sqrt{5}}{2} = \frac{-3}{2}\sqrt{5}$ LHS = RHS \Rightarrow Hence, verified. Q10. $7y^2 - \frac{11}{3}y - \frac{2}{3}$ **Sol.** Let $f(y) = 7y^2 - \frac{11}{3}y - \frac{2}{3}y$ For zeroes of f(y), f(y) = 0 $7y^2 - \frac{11}{3}y - \frac{2}{3} = 0$ \Rightarrow $21y^2 - 11y - 2 = 0$ \Rightarrow $21y^2 - 14y + 3y - 2 = 0$ \Rightarrow $y = \frac{2}{3}$ $y = \frac{2}{3}$ \Rightarrow 7y + 1 = 0 $y = \frac{-1}{7}$ \Rightarrow \Rightarrow Verification of the relations between α , β , *a*, *b* and *c* $\alpha = \frac{2}{2}, \quad \beta = \frac{-1}{7}, \quad a = 7, \quad b = -\frac{11}{2}, \quad c = \frac{-2}{2}$ $\Rightarrow \qquad \alpha + \beta = \frac{-b}{a}$ $\alpha \cdot \beta = \frac{c}{a}$ $\Rightarrow \quad \left(\frac{2}{3}\right) \times \left(\frac{-1}{7}\right) = \frac{\frac{-2}{3}}{7}$ $\Rightarrow \qquad \left(\frac{2}{3}\right) - \frac{1}{7} = \frac{+\frac{11}{3}}{7}$ $\Rightarrow \qquad \frac{-2}{21} = \frac{-2}{3} \times \frac{1}{7} \\ \Rightarrow \qquad \frac{-2}{21} = \frac{-2}{21}$ $\frac{14-3}{21} = \frac{11}{3} \times \frac{1}{7}$ \Rightarrow $\frac{11}{21} = \frac{11}{21}$ \Rightarrow LHS = RHSLHS = RHS \rightarrow Hence, verified. Hence, verified.

EXERCISE 2.4

Q1. For each of the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomial by factorisation.

(i)
$$\frac{-8}{3}, \frac{4}{3}$$
 (ii) $\frac{21}{8}, \frac{5}{16}$ (iii) $-2\sqrt{3}, -9$ (iv) $\frac{-3}{2\sqrt{5}}, \frac{-1}{2}$

Sol. Main concept: (*a*) If α , β are the zeroes of *f*(*x*), then

$$f(x) = x^2 - (\alpha + \beta)x + \alpha\beta$$
(b) The zeroes of $f(x)$ are given by $f(x) = 0$

(i)
$$\alpha + \beta = \frac{-8}{3}$$
 and $\alpha \cdot \beta = \frac{4}{3}$ [Given]
 $f(x) = x^2 - (\alpha + \beta)x + \alpha\beta$ [Formula]

÷

Multiplying or dividing f(x) by any real number does not affect the zeroes of polynomial.

 $= x^2 - \left(\frac{-8}{3}\right)x + \frac{4}{3}$

 $f(x) = 3x^2 + 8x + 4$ [Multiplying by LCM 3] So, For zeroes of f(x), f(x) = 0 $3x^2 + 8x + 4 = 0$ \Rightarrow $3x^2 + 6x + 2x + 4 = 0$ \Rightarrow 3x(x+2) + 2(x+2) = 0 \Rightarrow (x+2)(3x+2) = 0 \Rightarrow x + 2 = 0 or 3x + 2 = 0 \Rightarrow x = -2 or $x = \frac{-2}{2}$ \Rightarrow $\therefore \alpha = -2 \text{ and } \beta = \frac{-2}{3}$ (*ii*) $\alpha + \beta = \frac{21}{8}$ and $\alpha \cdot \beta = \frac{5}{16}$ [Given] $f(x) = x^2 - (\alpha + \beta)x + \alpha \cdot \beta$ [Formula] $f(x) = x^2 - \left(\frac{21}{8}\right)x + \left(\frac{5}{16}\right)$ \Rightarrow Multiplying (or dividing) f(x) by any real number does not affect the

zeroes of
$$f(x)$$
 so, multiplying $f(x)$ by 16 (LCM), we get $f(x) = 16x^2 - 42x + 5$

For zeroes of polynomial
$$f(x)$$
, $f(x) = 0$
 $\Rightarrow 16x^2 - 42x + 5 = 0$
 $\Rightarrow 16x^2 - 40x - 2x + 5 = 0$
 $\Rightarrow 8x (2x - 5) - 1 (2x - 5) = 0$

(2x-5)(8x-1) = 0 \Rightarrow $\Rightarrow 2x - 5 = 0$ or 8x - 1 = 0 $x = \frac{1}{8}$ $\Rightarrow \qquad x = \frac{5}{2}$ or $\therefore \alpha = \frac{5}{2} \text{ and } \beta = \frac{1}{8}$ (*iii*) $\alpha + \beta = -2\sqrt{3}$ and $\alpha\beta = -9$ [Given] $f(x) = x^2 - (\alpha + \beta)x + \alpha\beta$ [Formula] $= x^{2} - (-2\sqrt{3})x + (-9)$ f(x) = x² + 2\sqrt{3}x - 9 \Rightarrow For zeroes of polynomial f(x), f(x) = 0 $x^{2} + 2\sqrt{3}x - 9 = 0$ \Rightarrow $x^{2} + 3\sqrt{3}x - 1\sqrt{3}x - 9 = 0$ \Rightarrow $x(x+3\sqrt{3}) - \sqrt{3}(x+3\sqrt{3}) = 0$ \Rightarrow $(x+3\sqrt{3})(x-\sqrt{3}) = 0$ \Rightarrow $x + 3\sqrt{3} = 0 \qquad \text{or} \qquad (x - \sqrt{3}) = 0$ $x = -3\sqrt{3} \qquad \text{or} \qquad x = \sqrt{3}$ $\alpha = -3\sqrt{3} \qquad \text{and} \qquad \beta = \sqrt{3}$ \Rightarrow \Rightarrow *.*.. (*iv*) $\alpha + \beta = \frac{-3}{2\sqrt{5}}$ and $\alpha \cdot \beta = -\frac{1}{2}$ [Given] $f(x) = x^2 - (\alpha + \beta)x + \alpha\beta$ [Formula] $= x^{2} - \left(\frac{-3}{2\sqrt{5}}\right)x + \left(-\frac{1}{2}\right)$ $f(x) = x^2 + \frac{3}{2\sqrt{5}}x - \frac{1}{2}$ \Rightarrow Multiplying or dividing f(x) by any real number does not affect the zeroes of f(x). On multiplying f(x) by $2\sqrt{5}$ (LCM), we get

f

$$f(x) = 2\sqrt{5}x^2 + 3x - \sqrt{5}$$

For zeroes of polynomial f(x), f(x) = 0f(x), f(x) = 0 $2\sqrt{5}x^{2} + 2x = \sqrt{5} = 0$

$$\Rightarrow 2\sqrt{5x^{2} + 3x - \sqrt{5}} = 0$$

$$\Rightarrow 2\sqrt{5x^{2} + 5x - 2x - \sqrt{5}} = 0$$

$$\Rightarrow \sqrt{5x(2x + \sqrt{5}) - 1(2x + \sqrt{5})} = 0$$

$$\Rightarrow (2x + \sqrt{5})(\sqrt{5x - 1}) = 0$$

$$\Rightarrow$$
 $(2x + \sqrt{5}) = 0$ or $\sqrt{5}x - 1 = 0$

36 **NCERT** Exemplar Problems Mathematics–X

$$\Rightarrow \qquad x = \frac{-\sqrt{5}}{2} \qquad \text{or} \qquad x = \frac{1}{\sqrt{5}}$$
$$\therefore \qquad \alpha = \frac{-\sqrt{5}}{2} \qquad \text{and} \qquad \beta = \frac{1}{\sqrt{5}}$$

Q2. Given that the zeroes of cubic polynomial $x^3 - 6x^2 + 3x + 10$ are of the form *a*, (a + b), (a + 2b) for some real numbers *a* and *b*, find the values of *a* and *b* as well as the zeroes of the given polynomial.

Sol. Main concept: $\alpha + \beta + \gamma = \frac{-b}{a}$, $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{+c}{a}$ and $\alpha\beta\gamma = \frac{-d}{a}$ Let $f(x) = x^3 - 6x^2 + 3x + 10$ [given] ...(*i*) $\alpha = a$, $\beta = a + b$ and $\gamma = a + 2b$ [Given] But, $f(x) = ax^3 + bx^2 + cx + d$...(*ii*) $\therefore a = 1$, b = -6, c = 3 and d = +10 [Comparing (i) and (ii)] $\alpha + \beta + \gamma = \frac{-b}{a}$ $a + a + b + a + 2b = \frac{+6}{1} \implies 3a + 3b = 6$ \Rightarrow a + b = 2 \Rightarrow b = 2 - a...(iii) \Rightarrow $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$ $a(a + b) + (a + b) (a + 2b) + (a + 2b) (a) = \frac{3}{1}$ \Rightarrow $a^{2} + ab + a^{2} + 2ab + ab + 2b^{2} + a^{2} + 2ab = 3$ \Rightarrow $3a^2 + 6ah + 2h^2 = 3$ \Rightarrow $3a^{2} + 6a(2 - a) + 2(2 - a)^{2} = 3$ [Using (iii)] \Rightarrow $3a^{2} + 12a - 6a^{2} + 2(4 + a^{2} - 4a) = 3$ \Rightarrow $-3a^{2} + 12a + 8 + 2a^{2} - 8a - 3 = 0$ \Rightarrow $-a^2 + 4a + 5 = 0$ \Rightarrow $a^2 - 4a - 5 = 0$ \Rightarrow $a^2 - 5a + a - 5 = 0$ \Rightarrow a(a-5) + 1(a-5) = 0 \Rightarrow (a+1)(a-5) = 0 \Rightarrow (a+1) = 0 or (a-5) = 0 \Rightarrow a = -1 or a = 5 \Rightarrow Now, b = 2 - a[From (iii)] When a = 5, b = 2 - 5 = -3

When *a* = -1, *b* = 2 - (-1) = 3 If *a* = -1 and *b* = 3, then zeroes are, *a*, (*a* + *b*), (*a* + 2*b*)

$$= -1, (-1+3), [-1+2(3)] \\= -1, 2, 5$$

If a = 5, and b = -3, then zeroes are 5, [5 + (-3)], [5 + 2(-3)] = 5, 2, -1So, zeroes in both cases are $\beta = 2$, $\gamma = -1$ and $\alpha = 5$.

Q3. Given that $\sqrt{2}$ is a zero of a cubic polynomial

 $6x^3 + \sqrt{2}x^2 - 10x - 4\sqrt{2}$, find its other two zeroes.

Sol. Main concept: Using Euclid's division algorithm here, remainder is zero. Then quotient will be quadratic whose zeroes can be find out by factorisation.

Let $f(x) = 6x^3 + \sqrt{2}x^2 - 10x - 4\sqrt{2}$

If $\sqrt{2}$ is the zero of f(x), then $(x - \sqrt{2})$ will be a factor of f(x). So, by remainder theorem when f(x) is divided by $(x - \sqrt{2})$, the quotient comes out to be quadratic.

:. $f(x) = (x - \sqrt{2}) (6x^2 + 7\sqrt{2}x + 4)$ (By Euclid's division algorithm) = $(x - \sqrt{2}) (6x^2 + 4\sqrt{2}x + 3\sqrt{2}x + 4)$

For zeroes of f(x), f(x) = 0

$$\therefore \qquad (x - \sqrt{2}) \left(6x^2 + 4\sqrt{2}x + 3\sqrt{2}x + 4 \right) = 0$$

$$\Rightarrow (x - \sqrt{2}) [2x(3x + 2\sqrt{2}) + \sqrt{2}(3x + 2\sqrt{2})] = 0$$

$$\Rightarrow (x - \sqrt{2}) (3x + 2\sqrt{2})(2x + \sqrt{2}) = 0$$

$$\Rightarrow x - \sqrt{2} = 0 \quad \text{or} \quad 3x + 2\sqrt{2} = 0 \quad \text{or} \quad 2x + \sqrt{2} = 0$$
$$\Rightarrow \quad x = \sqrt{2} \quad \text{or} \quad x = \frac{-2\sqrt{2}}{3} \quad \text{or} \quad x = \frac{-\sqrt{2}}{2}$$

So, other two roots are =
$$\frac{-2\sqrt{2}}{3}$$
 and $\frac{-\sqrt{2}}{2}$.

Q4. Find k so that $x^2 + 2x + k$ is a factor of $2x^4 + x^3 - 14x^2 + 5x + 6$. Also find all the zeroes of two polynomials.

Sol. Main concept: Factor theorem and Euclid's division algorithm. By factor theorem and Euclid's division algorithm, we get

$$f(x) = g(x) \times q(x) + r(x)$$
Let $f(x) = 2x^4 + x^3 - 14x^2 + 5x + 6$...(i)
and $g(x) = x^2 + 2x + k$
 $2x^2 - 3x - 8 - 2k$

$$x^{2} + 2x + k \int \frac{2x^{4} + x^{3} - 14x^{2} + 5x + 6}{2x^{4} + 4x^{3} + 2kx^{2}}$$

$$-3x^{3} - 14x^{2} - 2kx^{2} + 5x + 6$$

$$-3x^{3} - 6x^{2} - 3kx$$

$$+$$

$$-8x^{2} - 2kx^{2} + 5x + 3kx + 6$$

$$-8x^{2} - 16x - 8k$$

$$+$$

$$-2kx^{2} + 21x + 3kx + 8k + 6$$

$$-2kx^{2} - 4kx - 2k^{2}$$

$$+$$

$$+$$

$$-21x + 7kx + 2k^{2} + 8k + 6$$

But, r(x) = 0∴ $(21 + 7k)x + 2k^2 + 8k + 6 = 0x + 0$ ⇒ 21 + 7k = 0 and $2k^2 + 8k + 6 = 0$ $2k^2 + 6k + 2k + 6 = 0$ ⇒ $k = \frac{-21}{7}$ $\Rightarrow 2k(k + 3) + 2(k + 3) = 0$ ⇒ k = -3 $\Rightarrow (k + 3)(2k + 2) = 0$ ⇒ k = -3 $\Rightarrow k + 3 = 0 \text{ or } 2k + 2 = 0$ ⇒ k = -3 or k = -1

 $\therefore \text{ Common solution is } k = -3$

So,

$$q(x) = 2x^{2} - 3x - 8 - 2(-3)$$

$$= 2x^{2} - 3x - 8 + 6$$

$$\Rightarrow \qquad q(x) = 2x^{2} - 3x - 2$$

$$\therefore \qquad f(x) = g(x) q(x) + 0$$

$$= (x^{2} + 2x - 3) (2x^{2} - 3x - 2)$$

$$= (2x^{2} - 4x + 1x - 2) (x^{2} + 3x - 1x - 3)$$

$$= [2x(x-2) + 1 (x-2)] [x(x+3) - 1(x+3)]$$

$$\Rightarrow f(x) = (x-2) (2x+1) (x+3) (x-1)$$
For zeroes of $f(x)$, $f(x) = 0$
 \therefore $(x-1) (x-2) (x+3) (2x+1) = 0$
 $\Rightarrow (x-1) = 0$, $(x-2) = 0$, $(x+3) = 0$ and $2x+1 = 0$
 $\Rightarrow x = 1$, $x = 2$, $x = -3$ and $x = \frac{-1}{2}$
So, zeroes of $f(x)$ are 1, 2, -3, and $\frac{-1}{2}$.
Q5. Given that $(x - \sqrt{5})$ is a factor of cubic polynomial
 $x^3 - 3\sqrt{5x^2} + 13x - 3\sqrt{5}$, find all the zeroes of the polynomial.
Sol. Main concept: Factor theorem, Euclid's division algorithm.
Let $f(x) = x^3 - 3\sqrt{5x^2} + 13x - 3\sqrt{5}$
and $g(x) = (x - \sqrt{5})$
 $\because g(x)$ is a factor of $f(x)$ so $f(x) = q(x) (x - \sqrt{5})$
 $\frac{x^2 - 2\sqrt{5x} + 3}{x - \sqrt{5} \sqrt{x^3} - 3\sqrt{5x^2} + 13x - 2\sqrt{5}} - \frac{-2\sqrt{5x^2} + 10x}{-2\sqrt{5x^2} + 10x - 3\sqrt{5}} + \frac{3x - 3\sqrt{5}}{0}$
But, $f(x) = q(x) g(x)$
 $\therefore f(x) = (x^2 - 2\sqrt{5x} + 3) (x - \sqrt{5})$
 $\Rightarrow f(x) = [x^2 - ((\sqrt{5} + \sqrt{2}) + (\sqrt{5} - \sqrt{2})]x + (\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})][(x) - \sqrt{5}] = [x^2 - (\sqrt{5} + \sqrt{2})] - (\sqrt{5} - \sqrt{2}) [x - (\sqrt{5} + \sqrt{2})][(x - \sqrt{5}]]$
 $\Rightarrow f(x) = (x - \sqrt{5} - \sqrt{2}) (x - \sqrt{5} + \sqrt{2}) [x - \sqrt{5}]$
 $\Rightarrow f(x) = (x - \sqrt{5} - \sqrt{2}) (x - \sqrt{5} + \sqrt{2}) (x - \sqrt{5})$
For zeroes of $f(x)$, $f(x) = 0$
 $\Rightarrow (x - \sqrt{5} - \sqrt{2}) = 0$ or $(x - \sqrt{5} + \sqrt{2}) = 0$ or $(x - \sqrt{5}) = 0$

$$\Rightarrow \qquad x = \sqrt{5} + \sqrt{2} \quad \text{or} \quad x = \sqrt{5} - \sqrt{2} \quad \text{or} \quad x = +\sqrt{5}$$

$$\therefore \text{ Zeroes are } (\sqrt{5} + \sqrt{2}), (\sqrt{5} - \sqrt{2}) \text{ and } \sqrt{5}.$$

Q6. For which values of *a* and *b* are the zeroes of $q(x) = x^3 + 2x^2 + a$ also the zeroes of polynomial $p(x) = x^5 - x^4 - 4x^3 + 3x^2 + 3x + b$? Which zeroes of p(x) are not the zeroes of q(x)?

Sol. Main concept: Factor theorem and Euclid's division algorithm. By factor theorem if q(x) is a factor of p(x), then r(x) must be zero.

$$p(x) = x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x + b$$

$$q(x) = x^{3} + 2x^{2} + a$$

$$x^{3} + 2x^{2} + a) \underbrace{x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x + b}_{x^{5} + 2x^{4} + ax^{2}}$$

$$-3x^{4} - 4x^{3} - ax^{2} + 3x^{2} + 3x + b$$

$$-3x^{4} - 6x^{3} - 3ax + b$$

$$-3x^{4} - 6x^{3} - 3ax + b$$

$$-3x^{4} - 6x^{3} + 4x^{2} + 2a$$

$$-ax^{2} - x^{2} + 3ax + 3x - 2a + b$$

So, by factor theorem remainder must be zero i.e.,

$$r(x) = 0$$

$$\Rightarrow -(a+1)x^{2} + (3a+3)x + (b-2a) = 0x^{2} + 0x + 0$$

Comparing the coefficients of x^{2} , x and constt. on both sides, we get
 $-(a+1) = 0$ and $3a+3 = 0$ and $b-2a = 0$

$$\Rightarrow a = -1$$
 and $a = -1$ and $b-2(-1) = 0$

$$\Rightarrow b = -2$$

For a = -1 and b = -2, zeroes of q(x) will be zeroes of p(x). For zeroes of p(x), p(x) = 0 $\Rightarrow \qquad (x^3 + 2x^2 + a) (x^2 - 3x + 2) = 0$ [:: a = -1] $\Rightarrow \qquad [x^3 + 2x^2 - 1] [x^2 - 2x - 1x + 2] = 0$ $\Rightarrow \qquad (x^3 + 2x^2 - 1) [x(x - 2) - 1 (x - 2)] = 0$ $\Rightarrow \qquad (x^3 + 2x^2 - 1) (x - 2) (x - 1) = 0$

Hence, x = 2 and 1 are not the zeroes of q(x).