Rochita (21)

O1BKDXU SET-I

SUMMATIVE ASSESSMENT - I, 2013 MATHEMATICS

Class - X

Time Allowed: 3 hours

Maximum Marks: 90

General Instructions:

All questions are compulsory.

The question paper consists of 34 questions divided into four sections A, B, C and D. Section-A comprises of 8 multiple choice questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.

There is no overall choice in this question paper

Use of calculator is not permitted.

SECTION - A

Question numbers 1 to 8 carry 1 mark each.

The decimal expansion of $\frac{141}{120}$ will terminate after how many places of decimals?

(a) 3 (b) 4 (c) 1 (d) 2

- For 'a' and 'b' being coprime, then a2 and b2 are:
 - (a) may or may not be coprime
 - (b) never coprime
 - (c) always coprime
 - (d) prime numbers
- Which of the following pair of linear equations has no solution?
- (a) 3x + 2y = 5; 2x + 3y = 5
- (b) 8x + 15y = 14; 4x + 5y = 7
- (c) 10x + 21y = 17; 20x + 42y = 34
- (d) 4x + 3y = 9; 8x + 6y = 19
- If $ax + by = a^2 b^2$ and bx + ay = 0, then the value of (x + y) is:
 - (a) a b
- (b) b-
- (c) a-b (d)
- $a^2 + b^2$

(a) ∠B < 90°

(b) ∠C > 90°

(c) $\angle C = 90^{\circ}$

(d) $\angle B = 90^{\circ}$

be and the second

1+15°

- 6 $(\sin^2\theta + \cos^2\theta + \cot^2\theta)$ is equal to:
 - 4At cosec²0

(B) $tan^2\theta$

(C) $\sec^2 \theta$

(D) 1

AR AR. BC 1

If C is an acute angle in a right ΔABC, right angled at B, then the value of sinC + cosC is equal 1 to:

(A) 1

- (B) 2
- (C) less than one
- (D) greater than one

8 If the 'less than' type ogive and 'more than' type ogive intersect each other at (20.5, 15.5), then 1 the median of the given data is':

- (A) 36.0
- (B) 20.5
- (C) 15.5
- (D) 5.5

SECTION - B

Question numbers 9 to 14 carry 2 marks each.

- A rational number in its decimal expansion is 1.7351. What can you say about the prime 2 factors of \overline{q} when this number is expressed in the form $\frac{p}{q}$? Give reason.
- Can (x-2) be the remainder on the division of p(x) = 7x + 3 by any polynomial q(x)? Justify 2 your answer.
- Find the quadratic polynomial whose zeroes are $\sqrt{2}$ and $2\sqrt{2}$.
- In the figure, $\triangle ABC$ is an equilateral triangle in which AD $\perp BC$. Prove that $3AB^2 = 4AD^2$.

Show that $\frac{1-\sin 60^{\circ}}{\cos 60^{\circ}} = 2-\sqrt{3}$.

2

2

Form the cumulative frequency table from the following data:

Marks	Number of students
less than 10	2 '
less than 20	12
less than 30	37
less than 40	57
less than 50	60

Write the frequencies of the classes (20 - 30) and (30 - 40)

Question numbers 15 to 24 carry 3 marks each.

15

Prove that
$$\sqrt{2} + \sqrt{3}$$
 is irrational.

17

16

The sum of the digits of a two digit number is 12. The number obtained by interchanging the 3 digits exceeds the given number by 18. Find the number.

y

Find, for what values of a and b will the following pair of linear equation has infinitely many 3 solution:

$$4x + 5y = 2$$
; $(2a + \sqrt[p]{b})x + (a + 8b)y = 2b - a + 1$.

18

Solve for
$$x$$
 and y : 6 ($ax + by$) = $3a + 2b$; 6 ($bx - ay$) = $3b - 2a$.

12

3

019

In the given figure PQ||BA; PR||CA. If PD = 12 cm. Find BD \times CD.

3

10 M 10 M

AABC and APQR are two isosceles triangles in which $\angle A = \angle P$. If $\frac{ar}{ar} \frac{\Delta ABC}{\Delta PQR} = \frac{9}{16}$, find $\frac{AD}{PS}$, where

AD_BC and PS_QR.

21

Prove that
$$\frac{\tan^2 A}{1 + \tan^2 A} + \frac{\cot^2 A}{1 + \cot^2 A} = 1.$$

3

22/

Prove that :
$$2(\sin^6\theta + \cos^6\theta) - 3(\sin^4\theta + \cos^4\theta) + 1 = 0$$

3

23

Find the median of the following data:

3

Classes	5-15	15 - 25	25 - 35	35-45	45 - 55	55 - 65	65 - 75
Frequency	1	10	16	15	24	8	7

24

The distribution of weights (in kilograms) of 60 workers in a factory are given. Find the mean weight of a worker.

Classes wt in kg,	40 – 45	45 – 5 0	50-55	55-60	60 - 65	65 – 70
Number of workers (f)	5	8	14	16	10	7

SECTION - D

Question numbers 25 to 34 carry 4 marks each.

A class of 20 boys and 15 girls is divided into n groups so that each group has x boys and y 4 girls. Find x, y and n. What values are reffered in a class?

- Obtain all the zeroes of the polynomial $x^4 + 2x^3 7x^2 8x + 12$, if two of its zeroes are 2 and 4
- For what value of k will the pair of equations have no solution? (2k-1)x + (k-1)y = 2k+1

In a $\triangle ABC$, $BD\perp AC$ and $AC^2 - AB^2 = BC^2$, prove that $BD^2 = AD \times DC$

129 In an equilateral triangle, prove that three times the square of one side is equal to four times 4 the square of one of its altitudes.

30 If
$$\tan \theta = \frac{20}{21}$$
, Show that $\left(\frac{1 - \sin \theta + \cos \theta}{1 + \sin \theta + \cos \theta}\right) = \frac{3}{7}$.

31 Evaluate:
$$\frac{4 \cot^2 60^\circ + \sec^2 30^\circ - 2\sin^2 45^\circ}{\sin^2 60^\circ + \cos^2 45^\circ}$$

Evaluate: $\frac{4 \cot^2 60^\circ + \sec^2 30^\circ - 2\sin^2 45^\circ}{\sin^2 60^\circ + \cos^2 45^\circ}$

	210	
If $\sin\theta = \frac{c}{\sqrt{c^2 + d^2}}$ and $d > 0$, find the values of $\cos\theta$ and $\tan\theta$.	10	V. 2 1
$\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ of the values of $\cos\theta$ and $\tan\theta$.		The state of the s
VC + Q		

Compute the median from the following data:

More than 150	0
More than 140	12
More than 130	27
More than 120	60
More than 110	105
More than 100	124
More than 90	141
More than 80	150

	0	130	450	60	90'
Sina	0	1/2	1	Jy2	4
Cos d.	1	5/2	Kr	1/2	0
Tano.	0	1/53		53	nd
coseco.	n-d	2	SI	3/53	1 /
seco.	1	453	Sz	2	n-d
coto	nol	53	1	153	0

Find mean, median and mode of the following data:

I Hear Investor				T.00 00	Ton 100	1100 - 120	120 -140
Classes	0 - 20	20 - 40	40 - 60	60 - 80	80 - 100	5	3
Frequency	6	8	10	12	6	13	10

Mode: 8x 80 80 80)