XI CHEMISTRY TEST ON SOME BASIC CONCEPTS OF CHEMISTRY

M.M.: 26

Time: 1 Hr.

1. If 10^{21} molecules are removed from 200 mg of CO_{2} then how many moles of CO_{2} are left? $\mathbf{2}$
2. A solution is prepared by adding 2 g of a substance A to 18 g of water. Calculate mass percent of the solute. 2
3. What are molality and molarity? Write its unit also. 2
4. How many moles of CO_{2} will be obtained when 0.274 mole of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is burnt? 2
5. How much copper can be obtained from 100 g of copper sulphate? 2
6. A solution contains 25% water, 25% ethanol and 50% acetic acid by mass. Calculate the mole fraction of each component.
7. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, $1.41 \mathrm{~g} \mathrm{ml}^{-1}$ and the mass per cent of nitric acid in it being 69%.
8. Calculate number of atoms in each of the following :
a. 52 moles of Helium
b. 52 u of Helium
c. 52 g of Helium
9. An oxide of nitrogen has the following percentage composition :

Nitrogen $=25.94$ and oxygen $=74.06$. Calculate the empirical formula.

XI CHEMISTRY TEST ON SOME BASIC CONCEPTS OF CHEMISTRY

M.M.: 26

Time: 1 Hr.

1. If 10^{21} molecules are removed from 200 mg of CO_{2} then how many moles of CO_{2} are left? $\mathbf{2}$
2. A solution is prepared by adding 2 g of a substance A to 18 g of water. Calculate mass percent of the solute. 2
3. What are molality and molarity? Write its unit also. 2
4. How many moles of CO_{2} will be obtained when 0.274 mole of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is burnt? 2
5. How much copper can be obtained from 100 g of copper sulphate? 2
6. A solution contains 25% water, 25% ethanol and 50% acetic acid by mass. Calculate the mole fraction of each component.
7. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, $1.41 \mathrm{~g} \mathrm{ml}^{-1}$ and the mass per cent of nitric acid in it being 69%.
8. Calculate number of atoms in each of the following :
a. 52 moles of Helium
b. 52 u of Helium
c. 52 g of Helium
9. An oxide of nitrogen has the following percentage composition :

Nitrogen $=25.94$ and oxygen $=74.06$. Calculate the empirical formula.

