EXEMPLAR POINT (A Complete Institute For Students)

CREATING AND SETTING EXAMPLES FOR FUTURE ...

XI CHEMISTRY TEST — THERMODYNAMICS

M.M.: 30

TIME : 1 HR.

1.	Predict change in internal energy for an isolated system at constant volume.	1
2.	Is ΔH a state function? What is ΔH for a cyclical process?	1
3.	Write a mathematical relation which relates heat, randomising influence and temperature.	1
4.	Enthalpy of atomisation for reaction $CH_4(g) \rightarrow C + 4H$ is 1665 kJ/mol. What is bond energy of C—H bond?	1
5.	Find which relation is correct if :	1
	i. C(g) + 4H (g) \rightarrow CH ₄ (g) Δ_r H = x kJ/mol ii. C (graphite) + 2H ₂ (g) \rightarrow CH ₄ (g) Δ_r H = y kJ/mol	
	a. x = y b. x = 2y c. x > y d. x < y	
6.	When water freezes in a glass beaker, what happens to ΔS (system) and ΔS (surroundings) and why?	2
7.	Value of $\Delta_{\rm f}$ H for NH ₃ is –91.8 kJ/mol. Find enthalpy change for : 2NH ₃ (g) \rightarrow N ₂ (g) + 3H ₂ (g)	2
8.	At 298 K, Δ H for reaction 2A + B \rightarrow C, is 400 kJ/mol and Δ S is 0.2 kJ/k/mol. At what temperature will the reaction be spontaneous if Δ H and Δ S is constant over temperature range.	on 2
9.	Find enthalpy change of reaction at 298 K, is $\Delta U = -742.7$ kJ/mol at 298 K.	3
	$NH_{2} CN(s) + \frac{3}{2} O_{2}(g) \rightarrow N_{2}(g) + CO_{2}(g) + H_{2}O(\ell)$	
10.	Calculate $\frac{\Delta H^{\circ}}{\text{lattice}}$ for Na Br. $\frac{\Delta H}{\text{sub}}$ for sodium metal = 108.4 kJ/mol, ionisation enthalpy of sodium = 496 kJ/mol	ol,
	e ⁻ gain enthalpy of bromine = -325 kJ/mol, bond dissociation enthalpy of bromine = 192 kJ/mol,	
	Δ_{f} H° for NaBr (s) = -360.1 kJ/mol.	3
11.	Find $\Delta_r H$ for $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$	3
	a. Given that B.E. of H ₂ , Br ₂ , HBr is 435 kJ/mol, 192 kJ/mol and 368 kJ/mol respectively.	
	b. What is the enthalpies of all elements in their standard state?	
12.	Find enthalpy change on freezing 1 mol of water at 10.0° C to ice at -10° C.	4
	$\Delta_{fus} H = 6.03 \text{ kJ/mol at } 0^{\circ} \text{ C}$	
	C _p [(H ₂ O) ℓ] = 75.3 J/mol / k	
	C _p [(H ₂ O) S] = 36.8 J/mol / k	
13.	a. Given : $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \Delta_r H = -92.4 \text{ kJ/mol. What is } \Delta_f H \text{ of } NH_3 \text{ gas}?$	1
	b. What are signs of ΔH and ΔS for reaction : $2CI(g) \rightarrow CI_2(g)$.	2
	c. For reaction, $2A(g) + B(g) \rightarrow 2 D(g) \Delta U^{\circ} = -10.5 \text{ kJ}$	
	$\Delta S = -44.10$ J/k. Calculate Δg° for reaction and predict whether reaction is spontaneous or not.	3