\sum XEMPLAR POINT ${ }^{(\angle P P)}$
 A Complete Institute For Students

CREATING AND SETTING EXAMPLES FロR FUTURE...

XI CHEMISTRY TEST - THERMODYNAMICS

M.M. : 30

TIME: 1 HR.

1. Predict change in internal energy for an isolated system at constant volume.
2. Is $\Delta \mathrm{H}$ a state function? What is $\Delta \mathrm{H}$ for a cyclical process? $\mathbf{1}$
3. Write a mathematical relation which relates heat, randomising influence and temperature.
4. Enthalpy of atomisation for reaction $\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}+4 \mathrm{H}$ is $1665 \mathrm{~kJ} / \mathrm{mol}$. What is bond energy of $\mathrm{C}-\mathrm{H}$ bond? $\mathbf{1}$
5. Find which relation is correct if :
i. $\mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \Delta_{\mathrm{r}} \mathrm{H}=x \mathrm{~kJ} / \mathrm{mol}$
ii. C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \Delta_{\mathrm{r}} \mathrm{H}=y \mathrm{~kJ} / \mathrm{mol}$
a. $x=y$
b. $x=2 y$
c. $x>y$
d. $x<y$
6. When water freezes in a glass beaker, what happens to $\Delta \mathrm{S}$ (system) and $\Delta \mathrm{S}$ (surroundings) and why? 2
7. Value of $\Delta_{\mathrm{f}} \mathrm{H}$ for NH_{3} is $-91.8 \mathrm{~kJ} / \mathrm{mol}$. Find enthalpy change for : $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad$ 2
8. At $298 \mathrm{~K}, \Delta \mathrm{H}$ for reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$, is $400 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}$ is $0.2 \mathrm{~kJ} / \mathrm{k} / \mathrm{mol}$. At what temperature will the reaction be spontaneous if $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ is constant over temperature range.
9. Find enthalpy change of reaction at 298 K , is $\Delta \mathrm{U}=-742.7 \mathrm{~kJ} / \mathrm{mol}$ at 298 K .

$$
\mathrm{NH}_{2} \mathrm{CN}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

10. Calculate $\underset{\text { lattice }}{\Delta H^{\circ}}$ for Na Br . $\stackrel{\Delta H}{\Delta \mathrm{H}}$ for sodium metal $=108.4 \mathrm{~kJ} / \mathrm{mol}$, ionisation enthalpy of sodium $=496 \mathrm{~kJ} / \mathrm{mol}$, e^{-}gain enthalpy of bromine $=-325 \mathrm{~kJ} / \mathrm{mol}$, bond dissociation enthalpy of bromine $=192 \mathrm{~kJ} / \mathrm{mol}$, $\Delta_{\mathrm{f}} \mathrm{H}^{\circ}$ for $\mathrm{NaBr}(\mathrm{s})=-360.1 \mathrm{~kJ} / \mathrm{mol}$.
11. Find $\Delta_{\mathrm{r}} \mathrm{H}$ for $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
a. Given that B.E. of $\mathrm{H}_{2}, \mathrm{Br}_{2}, \mathrm{HBr}$ is $435 \mathrm{~kJ} / \mathrm{mol}, 192 \mathrm{~kJ} / \mathrm{mol}$ and $368 \mathrm{~kJ} / \mathrm{mol}$ respectively.
b. What is the enthalpies of all elements in their standard state?
12. Find enthalpy change on freezing 1 mol of water at $10.0^{\circ} \mathrm{C}$ to ice at $-10^{\circ} \mathrm{C}$.

$$
\begin{gathered}
\Delta_{\text {fus }} \mathrm{H}=6.03 \mathrm{~kJ} / \mathrm{mol} \text { at } 0^{\circ} \mathrm{C} \\
\mathrm{C}_{\mathrm{p}}\left[\left(\mathrm{H}_{2} \mathrm{O}\right) \ell\right]=75.3 \mathrm{~J} / \mathrm{mol} / \mathrm{k} \\
\mathrm{C}_{\mathrm{p}}\left[\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{S}\right]=36.8 \mathrm{~J} / \mathrm{mol} / \mathrm{k}
\end{gathered}
$$

13. a. Given : $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta_{\mathrm{r}} \mathrm{H}=-92.4 \mathrm{~kJ} / \mathrm{mol}$. What is $\Delta_{\mathrm{f}} \mathrm{H}$ of NH_{3} gas?
b. What are signs of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for reaction : $2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})$.
c. For reaction, $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightarrow 2 \mathrm{D}(\mathrm{g}) \Delta \mathrm{U}^{\circ}=-10.5 \mathrm{~kJ}$
$\Delta \mathrm{S}=-44.10 \mathrm{~J} / \mathrm{k}$. Calculate $\Delta \mathrm{g}^{\circ}$ for reaction and predict whether reaction is spontaneous or not.
