

No. of total pages: 7

GF-13-200

NEW GREEN FIELDS SCHOOL HALF YEARLY EXAMINATION, 2015-16

CHEMISTRY MODERNING STATES OF STATES

Time: 3 hrs.

Class - XII

M.M.: 100

General Instructions-

- (1) All questions are compulsory.
- (2) Question number 1 to 5 are very short answer questions and carry 1 mark each.
- Question number 6 to 10 are short answer questions of 2 marks each.
- Question number 11 to 22 are also short answer questions of 3 marks each.
- (5) Question number 23 carry 4 marks.
- Question numbers 24 to 26 are long answer. (6)
- Use log tables if necessary.
- Why does ZnO(s) becomes yellow upon heating?
- Write the electrode reactions taking place an lead storage battery. 2
- 3 What is shape selective catalyst?
- 4 Draw the structure of a noble gas species which is isostructural with-
 - (a) IC1,-

(b) BrO,-

- Which stoichiometric defect does not change the density of the crystal?
- 6 A solution containing 15 g urea (molar mass 60 g mol-1) per litre of solution in water has the same osmotic pressure (isotonic) as a solution of glucose (molar mass = 180 g mol⁻¹) in water. Calculate the mass of glucose present in one litre of its solution.
- An element with density 2.8 g cm⁻³ forms a fcc unit cell with edge length of 4×10^{-8} cm. Calculate the molar mass of the element.

[P.T.O.]

- 8 For a chemical reaction, variation in rate with concentration is shown below—
 - (a) What is the order of the reaction?
 - (b) What are the units of rate constant K for the reaction?

- 9 (a) Describe the role of cryolite in extraction of aluminium.
 - (b) Give the principle behind extraction of Silicon and Nickel.
- 10 (a) Give the IUPAC name of-
 - (i) [Co(H₂O)(CN)(en)₂]²⁺
- (ii) [PtCl₄]2-
- (b) Write the formula of the following-
 - (i) Potassium tetrahydropalladate (II)
 - (ii) Penta ammine nitrito-N-cobalt (III)

OR

- (a) Discuss the nature of bonding in co-ordination compounds if metal is attached to carbonyl ligand.
- (b) Draw structure of [Mn₂(CO)₁₀].
- 11 (a) A sample of ferrous oxide has its actual formula as Fe_{0.93}O_{1.00}. In this sample what fraction of metal ions are Fe²⁺ ions? What type of stoichiometric defect is present in this sample?
 - (b) What happens when silicon is doped with aluminium?

- Vaour pressure of pure water at 298 K is 23.8 mm Hg. 50 g of urea (H₂NCONH₂) is dissolved in 850 g of water. Calculate the vapour pressure of water for this solution.
- 13 (a) The cell in which the following reaction occurs— $2Fe^{3+}(aq.) + 2I^{-}(aq.) \longrightarrow 2Fe^{2+}(aq.) + I_{2}(s) \quad E^{\circ}_{cell} = 0.236 \text{ V}$ at 298 K. Calculate ΔG° and K_{C} of the cell reaction.
 - (b) The molar conductivity of strong electrolyte increases on dilution. Comment.
- 14 (a) Give the packing efficiency in hcp structure.

F-13-200

- (b) Give reason very old glass objects appear slightly milky instead of being transparent.
- (c) Gold atomic radius = 0.144 nm crystallises in Body centred unit cell. What is the length of unit cell.
- 15 Assign reasons for the following—
 - (a) Helium finds wide application in diving system.
 - (b) Oxygen forms π bonds where as sulphur does not form π bonds.
 - (c) Nitrogen does not form NCl, but phosphorus forms PCl,
- 16 (a) [Cr(NH₃)₆]³⁺ is paramagnetic while [Ni(CN)₄]²⁻ is diamagnetic why? Explain using VBT.
 - (b) Write all the geometrical isomers of [Co(NH₃)(Cl)(F)(py)].
- 17 (a) Give reactions for metallurgy of gold.
 - (b) What is Van Arkel method of refining?
- 18 (a) What happens when white phosphorus is heated with concentrated NaOH solution in an inert atmosphere of CO₂?
 - (b) Which gas emitted from exhaust systems of supersonic jet aeroplanes is depleting ozone layer? Give reaction.
 - (c) Give the increasing order of reactivity towards acidic strength HCl, HBr, HI, HF.

F. DY

- 19 (a) Calculate emf of the following cell Fe(s)/Fe²⁺(0.001 M) \parallel H⁺ (1M) \mid H₂(g) 1 bar \mid Pt(s) E°_{Fe²⁺/Fe} = -0.44 V
 - (b) The molar conductivity of 0.025 mol⁻¹ methanoic acid is 46.1 S cm² mol⁻¹. Calculate its degree of dissociation and dissociation constant. Given $\lambda^{\circ}_{H+} = 349.6$ S cm² mol⁻¹ $\lambda^{\circ}_{HCOO-} = 54.6$ S cm² mol⁻¹.
- 20 (a) A reaction is third order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactants is—
 - (i) doubled
- (ii) reduced to ½
- (b) The rate constant for the decompostion of hydrocarbons is 2.418 × 10⁻⁵ at 546 K. If the energy of activation is 179.9 KJ mol⁻¹. What will be the value of pre-exponential factor?
- 21 (a) Give crystal field splitting diagram for octahedral complexes. What will be the electronic configuration of d⁶ species according to CFT if a strong field ligand is attached.
 - (b) A solution of [Ni(H₂O)₆]²⁺ is green but a solution of [Ni(CN)₄]²⁻ is colourless explain.
 - (c) Give the magnetic moment of [Ni(H₂O)₆]²⁺.
- 22 (a) Calculate the number of coulombs required to deposited 40.5 g of Al when electrode reation is—

 $Al^{3+}(aq.) + 3e^- \longrightarrow Al(s).$

(b) How many grams of silver could be plated out of a shield by electrolysis of a solution containing Ag⁺ ions for a period of 4 hours at a current of 8.5 A?

OR

(a) Can you store CuSO₄ solution in a zinc pot?

(b) Calculate the emf of the cell-

$$Mg(s) + 2Ag^{+}(aq.) \longrightarrow Mg^{2+}(aq.) + 2Ag(s)$$

$$[Mg^{2+}] = 0.130 \text{ M} \text{ and } [Ag^+] = 1 \times 10^{-4} \text{ M}$$

$$E_{Mg^{2+}/Mg}^{\circ} = -2.37 \text{ V}$$
 $E_{Ag^{+}/Ag}^{\circ} = +0.80 \text{ V}$

- 23 Teacher was explaining modern adsorption theory of catalysis in a slide based lecture.
 - By chance he could not place numbering on slides. She was asked to help to place the slides in the order of steps involved—

$$A+B \longrightarrow A-B$$

Based on the above figures-

- (a) Arrange the slides I to V in accordance with correct steps. Mention the process.
- (b) Give one example of industrial application involving this theory.
- (c) What values are associated with the teacher?
- 24 (a) Calculate the boiling point of a solution containing 0.61 g of benzoic acid in 5 g of CS₂. Assuming 84% dimerisation of acid. The boiling point and K_b of CS₂ are 46.2°C and 2.3 K kg mol⁻¹ respectively.
 - (b) State Henry's law and give its one application.

- (a) Calculate the mass of ascosbing acid (Vitamin C, $C_6H_8O_6$) to be dissolved in 75 g of acetic acid to lower its melting point by 1.5°C. $K_b = 3.9 \text{ K kg mol}^{-1}$
- (b) What is reverse osmosis? Explain.
- (c) Why acetone and chloroform mixed together forms non-ideal solutions?
- 25 Give reasons for the following—
 - (a) Sugar gets charged on addition of concentrated sulphuric acid.
 - (b) The negative value of electron gain enthalpy of fluorine is less than that of chlorine.
 - (c) SF₆ is less reactive than SF₄.
 - (d) Arrange in the increasing order of reducing character— NH₃, PH₃, AsH₃, SbH₃, BiH₃
 - (e) Draw the structure of peroxodi sulphuric acid.

OR

(a) Complete the following reactions-

$$NH_3 + 3Cl_2 \longrightarrow$$
 excess

$$XeF_6 + 2H_2O \longrightarrow$$

- (b) Arrange the following in order of property indicated F₂, Cl₂, Br₂, I₂ (increasing bond dissociation enthalpy)
- (c) Give reason—
 - (i) Why are halogens coloured?
 - (ii) Why does $R_3P = 0$ exist but $R_3N = 0$ does not (R = alkyl group)?
- 26 (a) For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data is obtained—

t (sec)	0	360	720
P (atm)	35	54	63

Calculate rate constant.

(b) The slope of a line in the graph of log K versus 1/T for a reaction is -5841 K. Calculate energy of activation for the reaction.

OR

- (a) A certain reaction is 50% complete in 20 minutes at 300 K and the same reaction is again 50% complete at 350 K in 5 minutes. Calculate the activation energy if the reaction is first order.
- (b) For the reaction—

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_2(g)$$

If $\Delta [NH_3]/\Delta t = 4 \times 10^{-8} \text{ mol L}^{-1} \text{ s}^{-1}$

What is the value of $\Delta[H_2]/\Delta t$?

(c) Why can't moedcularity of any reaction be equal to zero?