No. of Printed Pages: 4

FIRST TERM EXAMINATION, 2015-16

Subject: Mathematics

Time: 3 Hrs.

CLASS: XII

Gobind

M.M. : 100

Note:

- (1) All questions of section-A carry 1 mark each.
- (2) All questions of section-B carry 4 marks each.
- (3) All questions of section-C carry 6 marks each.

Section-(A)

1. If A is any square matrix of order 3 and |A.adj.A| = 8, Find |A|

2. Find (AB)' if
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$
, $B^1 = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$

3. Evaluate:

$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$

4. Evaluate:

$$\int \frac{\left(e^{x-l} + x^{e-l}\right)}{e^x + x^e} dx$$

5. Differentiate:

$$\sqrt{a\cos x + 3}$$

6. Evaluate:

$$\int e^{3\log x} \cdot x^4 dx$$

Section-(B)

7. Evalaute:

$$\int \frac{dx}{\cos(x-a)\cos(x-b)}$$

Find the ara of the region:

$$\{(x.y): y^2 \ge ax, x^2 + y^2 \le 2ax, x \ge 0, y \ge 0\}$$

Let $f: N \to R$ be a function defined as

$$f(x) = 4x^2 + 12x + 15$$
.

2 + y = 20/0 - 2 2 - 20/0 - 2 2

Show that $f: N \to S$ where S is the range of f, is invertible. Find the inverse of f.

Prove that: 10.

$$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$$

If a, b, c are all positive and are the pth, qth and rth terms of G.P. then show that :

$$\begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = 0$$

OR

By using elementary row operations find the inverse of the matrix

$$\begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}$$

- The volume of a cube is increasing at the rate of 7 cm³/sec. How fast is the surface area 12. increasing when the length of an edge is 12 cm.
- 13. Evaluate:

$$\int \left(\sqrt{\cot x} + \sqrt{\tan x} \right) dx$$

14. Evaluate:

$$\int_{1}^{3/2} |x \sin \pi x| dx$$

Evaluate:

15. Evaluate:
$$\int_0^1 (3x^2 + 2x + 1) dx \text{ as limit of sums.}$$

$$\int_0^1 (3x^2 + 2x + 1) dx$$
 as limit of sums

- 16. Let * be the binary operation on the set Q. of rational numbers as a * b = $\frac{ab}{4}$, check the operation for commutative and associative property.
- Prove that:

$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\cos^{-1}\frac{3}{5}$$

- The sum of the length of the hypotenuse and a side of a right triangle is given show that the area of triangle is maximum when the angle between them is $\frac{\pi}{3}$.
- 19. Verify rolle's theorem for

$$f(x) = x(x+3) e^{-x/2} \text{ in } [-3, 0]$$

Section-(C)

- An open box with a square base is to be made out of a given card board of area c2 sq. units. Show that the maximum volume of the box is $\frac{c^3}{6\sqrt{3}}$ cubic units.
- Find $\frac{dy}{dx}$ if $y^x + x^y + x^x = a^b$

OR

Find
$$\frac{dy}{dx}$$
 if $x = \frac{\sin^3 t}{\sqrt{\cos 2t}}$, $y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$

22. Use product $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$ to solve the system of equations: x - y + 2z = 1 $(es)^{2} + x + \frac{1}{4} \times (-6im)^{2} + \frac{1}{4} \times (-6im$

$$x - y + 2z = 1$$

$$2y - 3z = 1$$

$$3x - 2y + 4z = 2$$

- Water is dripping out from a conical funnel of semi vertical angle $\frac{\pi}{6}$ at the uniform rate of 6 cm²/sec, in its curved surface area through a tiny hole at vertex in the bottom when slant height of water is 4 cm, Find the rate of decrease of slant height of water. Water is a natural resource. Write the importance of water in our daily life.
- 24. Using integration find the area of the triangle formed by positive x-axis and tangent and normal to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$
- 25. Evaluate:

(a)
$$\int_{-\pi}^{\pi} (\cos ax - \sin bx)^2 dx$$

(b)
$$\int_{1/3}^{1} \frac{(x-x^3)^{1/3}}{x^4} dx$$

26. (a) Check the continuity of:

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

at
$$x = 0$$

(b) Differentiate:

$$\tan^{-1}\left\{\frac{\sqrt{1+x^2}-1}{x}\right\}$$
 w.r.t. x.