Exercise 7.1

Question 1:

Which of the following numbers are not perfect cubes:
(i) 216
(ii) 128
(iii) 1000
(iv) 100
(v) 46656

Emini Answer 1:
(i) 216

Prime factors of $216=2 \times 2 \times 2 \times 3 \times 3 \times 3$
Here all factors are in groups of 3's (in triplets)
Therefore, 216 is a perfect cube number.

$\mathbf{2}$	$\mathbf{2 1 6}$
$\mathbf{2}$	108
$\mathbf{2}$	54
$\mathbf{3}$	27
$\mathbf{3}$	9
$\mathbf{3}$	3
	1

(ii) 128

Prime factors of $128=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$ Here one factor 2 does not appear in a 3 's group. Therefore, 128 is not a perfect cube.

$\mathbf{2}$	$\mathbf{1 2 8}$
$\mathbf{2}$	64
$\mathbf{2}$	32
$\mathbf{2}$	16
$\mathbf{2}$	8
$\mathbf{2}$	4
$\mathbf{2}$	2
	1

(iii) 1000

Prime factors of $1000=2 \times 2 \times 2 \times 3 \times 3 \times 3$
Here all factors appear in 3 's group.
Therefore, 1000 is a perfect cube.

$\mathbf{2}$	$\mathbf{1 0 0 0}$
$\mathbf{2}$	500
$\mathbf{2}$	250
$\mathbf{5}$	125
$\mathbf{5}$	25
$\mathbf{5}$	5
	$\mathbf{1}$

(iv) 100

Prime factors of $100=2 \times 2 \times 5 \times 5$
Here all factors do not appear in 3 's group.
Therefore, 100 is not a perfect cube.

$\mathbf{2}$	$\mathbf{1 0 0}$
$\mathbf{2}$	50
$\mathbf{5}$	25
$\mathbf{5}$	5
	1

(v) 46656

Prime factors of $46656=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$ Here all factors appear in 3 's group.
Therefore, 46656 is a perfect cube.

$\mathbf{2}$	$\mathbf{4 6 6 5 6}$
$\mathbf{2}$	23328
$\mathbf{2}$	11664
$\mathbf{2}$	5832
$\mathbf{2}$	2916
$\mathbf{2}$	1458
$\mathbf{3}$	729
$\mathbf{3}$	243
$\mathbf{3}$	81
$\mathbf{3}$	27
$\mathbf{3}$	9
$\mathbf{3}$	3
	$\mathbf{1}$

Question 2:

Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube:
(i) 243
(ii) 256
(iii) 72
(iv) 675
(v) 100
teai Answer 2:
(i) 243

Prime factors of $243=3 \times 3 \times 3 \times 3 \times 3$
Here 3 does not appear in 3's group.
Therefore, 243 must be multiplied by 3 to make it a perfect cube.

$\mathbf{3}$	$\mathbf{2 4 3}$
$\mathbf{3}$	81
$\mathbf{3}$	27
$\mathbf{3}$	9
$\mathbf{3}$	3
	1

(ii) 256

Prime factors of $256=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
Here one factor 2 is required to make a 3 's group.
Therefore, 256 must be multiplied by 2 to make it a perfect cube.

$\mathbf{2}$	$\mathbf{2 5 6}$
$\mathbf{2}$	128
$\mathbf{2}$	64
$\mathbf{2}$	32
$\mathbf{2}$	16
$\mathbf{2}$	8
$\mathbf{2}$	4
$\mathbf{2}$	2
	1
$\mathbf{2}$	$\mathbf{7 2}$
$\mathbf{2}$	36
$\mathbf{2}$	18
$\mathbf{3}$	9
$\mathbf{3}$	3
	1

(iii) 72

Prime factors of $72=2 \times 2 \times 2 \times 3 \times 3$
Here 3 does not appear in 3's group.
Therefore, 72 must be multiplied by 3 to make it a perfect cube.

(iv) 675

Prime factors of $675=3 \times 3 \times 3 \times 5 \times 5$
Here factor 5 does not appear in 3's group.
Therefore 675 must be multiplied by 3 to make it a perfect cube.

$\mathbf{3}$	$\mathbf{6 7 5}$
$\mathbf{3}$	225
$\mathbf{3}$	75
$\mathbf{5}$	25
$\mathbf{5}$	5
	1

(v) 100

Prime factors of $100=2 \times 2 \times 5 \times 5$
Here factor 2 and 5 both do not appear in 3 's group.
Therefore 100 must be multiplied by $2 \times 5=10$ to make it a perfect cube.

$\mathbf{2}$	$\mathbf{1 0 0}$
$\mathbf{2}$	50
$\mathbf{5}$	25
$\mathbf{5}$	5
	1

Question 3:

Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube:
(i) 81
(ii) 128
(iii) 135
(iv) 192
(v) 704

$\tau_{\text {max }}$ Answer 3:

(i) 81

Prime factors of $81=3 \times 3 \times 3 \times 3$
Here one factor 3 is not grouped in triplets.
Therefore 81 must be divided by 3 to make it a perfect cube.

$\mathbf{3}$	$\mathbf{8 1}$
$\mathbf{3}$	27
$\mathbf{3}$	9
$\mathbf{3}$	3
	1

(ii) 128

Prime factors of $128=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
Here one factor 2 does not appear in a 3 's group.
Therefore, 128 must be divided by 2 to make it a perfect cube.

$\mathbf{2}$	$\mathbf{1 2 8}$
$\mathbf{2}$	64
$\mathbf{2}$	32
$\mathbf{2}$	16
$\mathbf{2}$	8
$\mathbf{2}$	4
$\mathbf{2}$	2
	1

(iii) 135

Prime factors of $135=3 \times 3 \times 3 \times 5$
3135
Here one factor 5 does not appear in a triplet.
Therefore, 135 must be divided by 5 to make it a perfect cube.

$\mathbf{3}$	45
$\mathbf{3}$	15
$\mathbf{5}$	5

(iv) 192

Prime factors of $192=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$
Here one factor 3 does not appear in a triplet.
Therefore, 192 must be divided by 3 to make it a perfect cube.

$\mathbf{2}$	$\mathbf{1 9 2}$
$\mathbf{2}$	96
$\mathbf{2}$	48
$\mathbf{2}$	24
$\mathbf{2}$	12
$\mathbf{2}$	6
$\mathbf{3}$	3
	1

(v) 704

Prime factors of $704=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$
Here one factor 11 does not appear in a triplet.
Therefore, 704 must be divided by 11 to make it a perfect cube.

$\mathbf{2}$	$\mathbf{7 0 4}$
$\mathbf{2}$	352
$\mathbf{2}$	176
$\mathbf{2}$	88
$\mathbf{2}$	44
$\mathbf{2}$	22
$\mathbf{2}$	11
	1

Question 4:

Parikshit makes a cuboid of plasticine of sides $5 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$. How many such cuboids will he need to form a cube?

${ }^{\circ}$ Answer 4:

Given numbers $=5 \times 2 \times 5$
Since, Factors of 5 and 2 both are not in group of three.
Therefore, the number must be multiplied by $2 \times 2 \times 5=20$ to make it a perfect cube.
Hence he needs 20 cuboids.

Exercise 7.2

Question 1:

Find the cube root of each of the following numbers by prime factorization method:
(i) 64
(ii) 512
(iii) 10648
(iv) 27000
(v) 15625
(vii) 110592
(ix) 175616
(vi) 13824
(viii) 46656
(x) 91125

Eain Answer 1:
(i) 64

$$
\begin{aligned}
\sqrt[3]{64} & =\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
\sqrt[3]{64} & =2 \times 2 \\
& =4
\end{aligned}
$$

$\mathbf{2}$	$\mathbf{6 4}$
$\mathbf{2}$	32
$\mathbf{2}$	16
$\mathbf{2}$	8
$\mathbf{2}$	4
$\mathbf{2}$	2
	$\mathbf{1}$

(ii) 512

$$
\begin{aligned}
\sqrt[3]{512} & =\sqrt[3]{2 \times 2 \times 2} \\
& =2 \times 2 \times 2 \\
& =8
\end{aligned}
$$

$\mathbf{2}$	$\mathbf{5 1 2}$
$\mathbf{2}$	256
$\mathbf{2}$	128
$\mathbf{2}$	64
$\mathbf{2}$	32
$\mathbf{2}$	16
$\mathbf{2}$	8
$\mathbf{2}$	4
$\mathbf{2}$	2
	1

(iii) 10648

$$
\begin{aligned}
\sqrt[3]{10648} & =\sqrt[3]{2 \times 2 \times 2 \times 11 \times 11 \times 11} \\
& =2 \times 11 \\
& =22
\end{aligned}
$$

$\mathbf{2}$	$\mathbf{1 0 6 4 8}$
$\mathbf{2}$	5324
$\mathbf{2}$	2662
$\mathbf{1 1}$	1331
$\mathbf{1 1}$	121
$\mathbf{1 1}$	11
	1

(iv) 27000

$$
\begin{aligned}
\sqrt[3]{27000} & =\sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5} \\
& =2 \times 3 \times 5 \\
& =30
\end{aligned}
$$

$\mathbf{2}$	$\mathbf{2 7 0 0 0}$
$\mathbf{2}$	13500
$\mathbf{2}$	6750
$\mathbf{3}$	3375
$\mathbf{3}$	1125
$\mathbf{3}$	375
$\mathbf{5}$	125
$\mathbf{5}$	25
$\mathbf{5}$	5
	1

(v) 15625

$$
\begin{aligned}
\sqrt[3]{15625} & =\sqrt[3]{5 \times 5 \times 5 \times 5 \times 5 \times 5} \\
& =5 \times 5 \\
& =25
\end{aligned}
$$

$\mathbf{5}$	$\mathbf{1 5 6 2 5}$
$\mathbf{5}$	3125
$\mathbf{5}$	625
$\mathbf{5}$	125
$\mathbf{5}$	25
$\mathbf{5}$	5
	1

\square
(vi) 13824

$$
\begin{aligned}
\sqrt[3]{13824} & =\sqrt[3]{2 \times 2 \times 3 \times 3 \times 3} \\
& =2 \times 2 \times 2 \times 3 \\
& =24
\end{aligned}
$$

$\mathbf{2}$	$\mathbf{1 3 8 2 4}$
$\mathbf{2}$	6912
$\mathbf{2}$	3456
$\mathbf{2}$	1728
$\mathbf{2}$	864
$\mathbf{2}$	432
$\mathbf{2}$	216
$\mathbf{2}$	108
$\mathbf{2}$	54
$\mathbf{3}$	27
$\mathbf{3}$	9
$\mathbf{3}$	3
	$\mathbf{1}$

(vii) 110592

$$
\begin{aligned}
\sqrt[3]{110592} & =\sqrt[3]{2 \times 2 \times 3 \times 3 \times 3} \\
& =2 \times 2 \times 2 \times 2 \times 3 \\
& =48
\end{aligned}
$$

$\mathbf{2}$	$\mathbf{1 1 0 5 9 2}$
$\mathbf{2}$	55296
$\mathbf{2}$	27648
$\mathbf{2}$	13824
$\mathbf{2}$	6912
$\mathbf{2}$	3456
$\mathbf{2}$	1728
$\mathbf{2}$	864
$\mathbf{2}$	432
$\mathbf{2}$	216
$\mathbf{2}$	108

$\mathbf{2}$	54
$\mathbf{3}$	27
$\mathbf{3}$	9
$\mathbf{3}$	3
	1

(viii) 46656

$$
\begin{aligned}
\sqrt[3]{46656} & =\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3} \\
& =2 \times 2 \times 3 \times 3 \\
& =36
\end{aligned}
$$

$\mathbf{2}$	$\mathbf{4 6 6 5 6}$
$\mathbf{2}$	23328
$\mathbf{2}$	11664
$\mathbf{2}$	5832
$\mathbf{2}$	2916
$\mathbf{2}$	1458
$\mathbf{3}$	729
$\mathbf{3}$	243
$\mathbf{3}$	81
$\mathbf{3}$	27
$\mathbf{3}$	9
$\mathbf{3}$	3
	$\mathbf{1}$

(ix) 175616

$$
\begin{aligned}
\sqrt[3]{175616} & =\sqrt[3]{2 \times 2 \times 7 \times 7 \times 7} \\
& =2 \times 2 \times 2 \times 7 \\
& =56
\end{aligned}
$$

$\mathbf{2}$	$\mathbf{1 7 5 6 1 6}$
$\mathbf{2}$	87808
$\mathbf{2}$	43904
$\mathbf{2}$	21952
$\mathbf{2}$	10976

$\mathbf{2}$	5488
$\mathbf{2}$	2744
$\mathbf{2}$	1372
$\mathbf{2}$	686
$\mathbf{7}$	343
$\mathbf{7}$	49
$\mathbf{7}$	7
	$\mathbf{1}$

(x) 91125
$\sqrt[3]{91125}=\sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$
$=3 \times 3 \times 5$
$=45$

$\mathbf{3}$	$\mathbf{9 1 1 2 5}$
$\mathbf{3}$	30375
$\mathbf{3}$	10125
$\mathbf{3}$	3375
$\mathbf{3}$	1125
$\mathbf{3}$	375
$\mathbf{5}$	125
$\mathbf{5}$	25
$\mathbf{5}$	5
	1

Question 2:

State true or false:
(i) Cube of any odd number is even.
(ii) A perfect cube does not end with two zeroes.
(iii) If square of a number ends with 5 , then its cube ends with 25 .
(iv) There is no perfect cube which ends with 8.
(v) The cube of a two digit number may be a three digit number.
(vi) The cube of a two digit number may have seven or more digits.
(vii) The cube of a single digit number may be a single digit number.

Tain Answer 2:

(i) False

Since, $1^{3}=1,3^{3}=27,5^{3}=125$ \qquad are all odd.
(ii) True

Since, a perfect cube ends with three zeroes.
e.g. $10^{3}=1000,20^{3}=8000,30^{3}=27000, \ldots \ldots$. . so on
(iii) False

Since, $5^{2}=25,5^{3}=125,15^{2}=225,15^{3}=3375$ (Did not end with 25)
(iv) False

Since $12^{3}=1728$
And $22^{3}=10648$
[Ends with 8]
[Ends with 8]
(v) False

Since $10^{3}=1000$
And $11^{3}=1331$
[Four digit number]
[Four digit number]
[Six digit number]
(vii) True
$1^{3}=1$
$2^{3}=8$
[Single digit number]
[Single digit number]

Question 3:

You are told that 1,331 is a perfect cube. Can you guess with factorization what is its cube root? Similarly guess the cube roots of $4913,12167,32768$.

Emin Answer 3:

We know that $10^{3}=1000$ and Possible cube of $11^{3}=1331$
Since, cube of unit's digit $1^{3}=1$
Therefore, cube root of 1331 is 11 .

4913
We know that $7^{3}=343$
Next number comes with 7 as unit place $17^{3}=4913$
Hence, cube root of 4913 is 17.

12167
We know that $3^{3}=27$
Here in cube, ones digit is 7
Now next number with 3 as ones digit $13^{3}=2197$
And next number with 3 as ones digit $23^{3}=12167$
Hence cube root of 12167 is 23.

32768
We know that $2^{3}=8$
Here in cube, ones digit is 8
Now next number with 2 as ones digit $12^{3}=1728$
And next number with 2 as ones digit $22^{3}=10648$
And next number with 2 as ones digit $32^{3}=32768$

Hence cube root of 32768 is 32 .

