HALF YEARLY EXAMINATION-2024-25 # Class X ## **MATHEMATICS** | TIME: 3 hours | | | MAX. MARKS: 80 | | | |--------------------------|---|--|--|--|--| | General Instructions: | | | | | | | 1. This Question Pape | er has 5 Sections A, B, | C, D and E. | | | | | 2. Section A has 20 M | CQs carrying 1 mark | each | | | | | 3. Section B has 5 que | estions carrying 02 m | arks each. | | | | | 4. Section C has 6 qu | estions carrying 03 m | arks each. | | | | | 5. Section D has 4 qu | estions carrying 05 m | narks each. | | | | | | se based integrated un
narks each respective | | marks each) with subparts of the | | | | | s has been provided. A | | 2 Qs of 5 marks, 2 Qs of 3 marks and been provided in the 2marks | | | | 8. Draw neat figures | wherever required. T | ake $\dot{\pi} = 22/7$ whereve | r required if not stated. | | | | | | SECTION A | | | | | | Section A consis | sts of 20 questions of 1 | l mark each. | | | | 1. A quadratic polyn | omial, the sum of who | ose zeroes is 0 and one | zero is 4, is | | | | (a) $x^2 - 16$ | (b) $x^2 + 16$ | (c) $x^2 + 4$ | (d) $x^2 - 4$ | | | | 2. Graphically, the pare | air of equations $6x -$ | 3y + 10 = 0 and $2x -$ | y + 9 = 0 represents two lines whi | | | | (a) Intersecting a | at exactly one point | (b) intersecting at exactly two points | | | | | (c) coincident | | (d) parallel | | | | | | same common differ
e difference between | | f one of these is -1 and that of the | | | | (a) -1 | (b) -8 | (c) 7 | (d) -9 | | | | 4. For what values o | f kwill the following | pair of linear equatio | ns have infinitely many solutions? | | | | (i) $kx+3y-(k-3)$ | = 0 (ii) $12x$ | x + ky - k = 0 | | | | | (a) -6 | (b) 0 | (c) 6 | (d) All of these | | | | 5. What is the com | mon difference of fol | llowing AP: | | | | | |--|----------------------------------|-------------------------------------|------------------------|---------------|--|--| | $3,3+\sqrt{2},3+2$ | $2\sqrt{2}, 3 + 3\sqrt{2} \dots$ | | | | | | | (a) 3 | (b) 2 | (c) √2 | (d) 2√2 | | | | | 6. The ratio of LCM (a) 1:2 | and HCF of the leas
(b) 2:1 | t composite and the lo
(c) 1 : 1 | east prime num (d) 1:3 | bers is: | | | | 7. If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is | | | | | | | | (a) 10 | (b) -10 | (c) 5 | . (| d) – 5 | | | | 8. The perimeter o | f a triangle with vert | tices (0, 4), (0, 0) and | (3, 0) is: | | | | | (a) 5 units | (h) 12 unite | (c) 11 units (d) (d) (d) (d) (d) | (5 . (5) | | | | | (a) k< 16 | (b) $k \le 16$ | (c) k> 16 | (d) $k \ge 16$ | | | | | 10. The midpoint of a line segment joining two points A (2, 4) and B (-2, -4) is | | | | | | | | (a) (-2, 4) | (b) (2, -4) | (c) (0, 0) | (d) (-2, -4) | | | | | 11. The LCM of two | numbers is 182 and | d their HCF is 13. If or | ne of the numbe | rs is 26, the | | | | other number is | | | | | | | | (a) 31 | (b) 71 | (c) 61 | (d) 91 | | | | | 12. If the zeroes of | the quadratic polyn | omial ax2 + bx + c, c | ≠ 0 are equal, th | ien | | | | (a) c and b have | opposite signs | (b) c and a | have opposite s | igns | | | | (c) c and b have same signs | | (d) c and a have same signs | | | | | | 13. If one root of eq | uation $4x^2 - 2x + (k$ | | | | | | | (a) -8 | (b) 8 | (c) -4 | (d) 4 | | | | | 14. The next (4th) to | erm of the A.P. $\sqrt{18}$ | , $\sqrt{50}$, $\sqrt{98}$, is: | | | | | | (a) √128 | (b)√140 | (c) √162 | (d) √200 | | | | | 15. If $ax + by = a^2 - 1$ | b^2 and $bx + ay = 0$, | then the value of x | y is: | | | | | (a) $a^2 - b^2$ | (b) a + b | (c) a – b | (d) $a^2 + b^2$ | | | | | 16. If a polynomial p | (x) is given by p(x) | $= x^2 - 5x + 6$, then | the value of | | | | p(1) + p(4) is: (a) 0 (b) 4 (c) 2 (d)-4 17. Two lines are given to be parallel. The equation of one of these lines is 5x - 3y = 2. The equation of the second line can be: (a) -15x - 9y = 5 (b) 15x + 9y = 5 (c) 9x - 15y = 6 (d) -15x + 9y = 518. A card is selected at random from a well shuffled deck of 52 playing cards. The probability of its being a face card is (a) 3/13 (b) 4/13 (c) 6/13 (d) 9/13 ASSERTION REASON BASED QUESTIONS: In question number 19 and 20, a statement of Assertion(A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices (a) Both (A) and (R) are true and (R) is the correct explanation of (A). - (b) Both A and (R) are true and (R) is not the correct explanation of (A). - (c) (A) is true but (R) is false. - (d) (A) is false but (R) is true. - 19. A number q is prime factorized as $3^2 \times 7^2 \times b$, where b is a prime number other than 3 and 7. Then Assertion (A): q is an odd number. Reason (R): $3^2 \times 7^2$ is an odd number. 20. Assertion(A): The probability of getting a bad egg in a lot of 400 is 0.035. The number of good eggs in the lot is 386. Reason(R): If the probability of an event is p, the probability of its complementary event will be 1-p ### SECTION B Section B consists of 5 questions of 2 marks each. - 21. Given that $\sqrt{2}$ is irrational, prove that $5 3\sqrt{2}$ is irrational. - 22. If α and β are the zeroes of $x^2 x 2$, form a quadratic polynomial whose zeroes are $2\alpha + 1$ and $2\beta + 1$. OR If α and β are the zeroes of $\beta(x) = 2x^2 + 5x + k$ such that $\alpha^2 + \beta^2 + \alpha\beta = 21/4$, find the value of k. 23. Find the value of k for which the equation $x^2 + k(2x + k - 1) + 2 = 0$ has real and equal root. OR Find the roots of the following quadratic equation: $\sqrt{3x^2-2\sqrt{2x}-2\sqrt{3}}=0$ - 24. How many three-digit numbers are divisible by 3? - 25. Show that A (6,4), B (5, -2), and C (7, -2) are the vertices of an isosceles triangle. #### SECTION C Section C consists of 6 questions of 3 marks each 26. Solve 2x + 3y = 11 and 2x - 4y = -24 and hence find the value of 'm' for which y = mx + 3OR Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu. - 27. Three unbiased coins are tossed simultaneously. Find the probability of getting: - (i) at least one head. - (ii) exactly one tail. - (iii) two heads and one tail. - 28. If the equation $(1 + m^2) x^2 + 2mcx + c^2 a^2 = 0$ has equal roots then show that $c^2 = a^2 (1 + m^2)$ - 29. In an A.P., if the 12th term is -13 and the sum of its first four terms is 24, find the sum of its first ten terms. - 30. In what ratio does the x-axis divide the line segment that joins the points (-4, -6) and (-1, 7)? Find out the coordinates of the point of division. - 31. Find the least number which when divided by 35, 56 and 91 leaves the same remainder 7 in each case. ## SECTION D # Section D consists of 4 questions of 5 marks each - 32. In a flight of 2800 km, an aircraft was slowed down due to bad weather. Its average speed is reduced by 100 km/h and time increased by 30 minutes. Find the original speed of the flight. - 33. The taxi charges in a city consist of a fixed charge together with the charge for the distance covered. For a distance of 10 km, the charge paid is ₹ 105 and for a journey of 15 km, the charge paid is ₹ 155. What are the fixed charges and the charge per km? How much does a person have to pay for travelling a distance of 25 km? OR Draw the graphs of the equations x - y + 1 = 0 and 3x + 2y - 12 = 0. Determine the coordinates of the vertices of the triangle formed by these lines and the x-axis and shade the triangular region. - 34. A sum of Rs 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is Rs 20 less than its preceding prize, find the value of each of the prizes. - 35. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. #### **SECTION E** ## Section E consists of 3 Case Studies of 4 marks each Case Study - 1 36. Essel World is one of India's largest amusement parks that offers a diverse range of thrilling rides, water attractions and entertainment options for visitors of all ages. The park is known for its iconic "Water Kingdom" section, making it a popular destination for family outings and fun-filled adventure. The ticket charges for the park are ₹ 150 per child and ₹ 250 per adult. On a day, the cashier of the park found that 300 tickets were sold and an amount of ₹ 55,000 was collected. Based on the above, answer the following questions: (i) If the number of children visited be x and the number of adults visited be y, then write the given situation algebraically. - (ii) (a) How many children visited the amusement park that day? OR - (b) How many adults visited the amusement park that day? - (iii) How much amount will be collected if 250 children and 100 adults visit the amusement park? Case Study - 2 37. While preparing for a competitive examination, Akbar came across a match-stick pattern-based question. The pattern is given below: Based on the above information, answer the following questions: - (i) Write first term and common difference of the A.P. formed by number of squares in each figure. - (ii) Write first term and common difference of the A.P. formed by number of sticks used in each figure. - (iii) (a) How many squares are there in Fig. (10)? Also, write the number of sticks used in Fig. (10). OR (iii) (b) If 88 sticks are used to make mth figure (Fig. (m)), find the value of m. How many squares are formed in this figure? Case Study - 3 38. While designing the school yearbook, a teacher asked the student that the length and width of a particular photo is increased by x units each to double the area of the photo. The original photo is 18 cm long and 12 cm wide. Based on the above information, answer the following questions: - (i) Write an algebraic depicting the above information. - (ii) Write the corresponding quadratic equation in standard form. - (iii) What should be the new dimensions of the enlarged photo? Can any rational value of x make the new area equal to 220 cm²?