EXERCISE

I. MULTIPLE TYPE QUESTIONS [MCQ'S 1 MARK EACH]

EASY LEVEL

1. Which of the following is a polynomial:

a)
$$2x^2 + \frac{3}{x} - 5$$
 b) $-3x^2 + \sqrt{2x} - 5$ c) $\sqrt{2}x^2 + \sqrt{3}x - 9$ d) $x + \frac{1}{x}$

2. If one zero of the quadratic polynomial $kx^2 + 3x + k$ is 2, then the value of k is:

5	5	6	6
a) — 6	b) - <u>-</u> 6	c) $-\frac{1}{5}$	d) $\frac{1}{5}$

3. A quadratic polynomial, whose zeros are 5 and –8 is

a) $x^2 + 13x - 40$ b) $x^2 + 4x - 3$ c) $x^2 - 3x + 40$ d) $x^2 + 3x - 40$

4. The graph of a quadratic polynomial is:

a) line b) circle c) parabola d) ellipse

- 5. The product of zeroes of the polynomial $2x^2 + 7x + a$, is 2, then a is:
 - a) 4 b)2 c) -4 d) none of these

II. ASSERTION AND REASON TYPE QUESTIONS [1 MARK EACH]

EASY LEVEL

Each of the following examples contains STATEMENT -1 (ASSERTION) and STATEMENT-2 (REASON) has following four choices (a), (b), (c), and (d), only one of which is the correct answer.

- a) Statement -1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- b) Statement -1 is true, Statement -2 is true; Statement -2 is not a correct explanation for Statement -1.
- c) Statement -1 is true, Statement- 2 is false.
- d) Statement -1 is false, Statement- 2 is true.
- Statement-1(Assertion): The polynomial x² + 2x 15 has two real zeroes.
 Statement- 2(Reason): A quadratic polynomial can have at most two real zeroes.

III. CASE BASED QUESTIONS

EASY LEVEL

1. Basketball and Soccer are played with a spherical ball. Even through an athlete dribbles the ball in both sports, a basketball player uses his hands, a soccer player uses his feet. Usually, a soccer is played outdoors on a large field, the basketball is played indoor on a court made out of wood. The projectile of soccer ball and basketball are in the form of parabola representing a quadratic polynomial.

Based on the above information answer the following questions:

a) What is the shape of the path traced shown in above figures.

b) If $3x^2 + 5x - 8$ is the parabola representing the graphs shown in above figures, then what is the sum of its zeroes.

c) Find the of zeroes of the polynomial $3x^2 + 5x - 8$ representing the graph shown in above figures?

OR

Find the quadratic polynomial if its zeroes are - 4 and 5.

IV. SHORT ANSWER TYPE QUESTIONS (SAI) [2 MARKS EACH]

- 1. Find the zeroes of the quadratic polynomial $f(x) = x^2 + 7x + 12$, and verify the relationship between the zeroes and its coefficients.
- 2. Find the zeroes of the quadratic polynomial $5u^2 + 10u$, and verify the relationship between the zeroes and its coefficients.
- 3. Find the zeroes of the quadratic polynomial x^2 –5, and verify the relationship between the zeroes and its coefficients.
- 4. Find the quadratic polynomial whose sum of zeroes and product of zeroes are $\sqrt{2}$, $\frac{1}{3}$ respectively.
- 5. If the product of the zeroes of the polynomial $ax^2 6x 6$ is 4, find the value of a.

EASY LEVEL

- 1. If α , β are zeroes of the quadratic polynomial $x^2 5x + k$, such that $\alpha \beta = 1$, find the value of k.
- 2. If α and β are the zeroes of polynomial $x^2 5x + 5$, then find the value of $\alpha^{-1} + \beta^{-1}$.

I. MULTIPLE TYPE QUESTIONS [MCQ'S 1 MARK EACH]

MEDIUM LEVEL

1.	The number of polynomials having –2 and 5 as zeroes is :							
	a) 1	b) 2	c) infinitely ma	ny d) None of	these			
				_ 2				
2.	If the product of	f the product of the zeroes of the quadratic polynomial $3x^2 + 5x + k$ is $\frac{-2}{3}$ then the value of k is :						
	a) –3	b) –2	c) –1	d) 3				
3.	The zeroes of the quadratic polynomial $f(x) = x^2 + 99x + 127$ are:							
	a) both positive	b) both	negative	c) one positive and one nega	ative	d) both equal		
4.	If α, β are the zeroes of the polynomial $f(x) = x^2 + x + 1$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to:							
	a) 1	b) –1	c) 0	d) 2				
5.	If the zeroes of the quadratic polynomial $ax^2 + bx + c$, $c \neq 0$ are equal then :							
	a) c and a have opposite signs b) c and b have opposite signs							
	c) c and a have same signs d) c and b have same signs							
	II. ASSERTION AND REASON TYPE QUESTIONS [1 MARK EACH]							

Medium Level

Each of the following examples contains STATEMENT -1 (ASSERTION) and STATEMENT-2 (REASON) has following four choices (a), (b), (c), and (d), only one of which is the correct answer.

- a) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement -1.
- b) Statement -1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- c) Statement -1 is true, Statement- 2 is false.
- d) Statement -1 is false, Statement -2 is true.
- 1. Statement-1(Assertion): A quadratic polynomial having 1/2 and 1/3 as its zeroes is $6x^2 5x + 1$. Statement- 2 (Reason): Quadratic polynomials having α , β are zeroes are given by
 - $k[x^2 (\alpha + \beta)x + \alpha\beta]$ where k is non-zero constant.

III. CASE BASED QUESTIONS

Medium Level

1. In the figures various structures are parabolic in shape. A parabola is a curve represented by a quadratic polynomial $p(x) = ax^2 + bx + c$.

Based on the above information answer the following questions:

- a) In the standard form of quadratic polynomial $,ax^2 + bx + c$, what is a, b, and c.
- b) If α and $1/\alpha$ are the zeroes of the quadratic polynomial $2x^2 x + 8k$, then find the value of k.
- c) In how many points of x axis, the graph of $x^2 + 1$ intersects.

OR

If the sum of the roots is -p and product of the roots is -1/p, then find the quadratic polynomial.

IV. SHORT ANSWER TYPE QUESTIONS (SAI) [2 MARKS EACH]

MEDIUM LEVEL

- 1. Find the zeroes of the quadratic polynomial $f(x) = 6x^2 3$, and verify the relationship between the zeroes and its coefficients.
- 2. If one zero of the polynomial $(a^2 + 9)x^2 + 13x + 6a$ is reciprocal of the other, find the value of a.
- 3. If α , β are zeroes of the quadratic polynomial $x^2 + 7x + 12$, then find the values of $\alpha^2 \beta + \alpha \beta^2$, $\frac{1}{\alpha} + \frac{1}{\beta}$.

MEDIUM LEVEL

- 1. If α and β are the zeroes of polynomial $x^2 (k + 6) x + 2(2k 1)$, then find the value of k if $\alpha + \beta = \frac{1}{2}\alpha \cdot \beta$.
- 2. If α and β are zeroes of the polynomials such that $\alpha + \beta = 24$ and $\alpha \beta = 8$, find the quadratic polynomials.
- 3. If α and β are the zeroes of polynomial x² 6x + a, then find the value of 'a' if $3\alpha + 2\beta = 20$
- 4. If one solution of the quadratic polynomial $3x^2 8x + 2k + 1$ is seven times the other. Find the solutions & the value of k.
- 5. If α and β are the zeroes of polynomial $3x^2 + 5x 2$, then form a quadratic polynomial whose zeroes are 2α and 2β .
- 6. If α and β are the zeroes of polynomial $x^2 2x 8$, then form a quadratic polynomial whose zeroes are 3α and 3β .
- 7. Given that the sum of the zeroes of the polynomial $(a + 1) x^2 + (2a + 3) x + (3a + 4)$ is -1. Find the product of its zeroes.
- 8. If α and β are zeroes of the polynomials $f(x)=x^2-8x+k$ such that $\alpha^2+\beta^2=40$, find 'k'.
- 9. If α and β are zeroes of the polynomials $f(x) = kx^2 + 2x + 3k$ such that sum of zeroes is equal to the product of zeros, find the value of 'k'.
- 10. If α and β are zeroes of the polynomials f (x) = 4x² 8kx 9 such that zeroes are opposite in nature and equal in magnitude then, find the value of 'k'
- 11. If α , β are zeroes of the quadratic polynomial $2x^2 5x + 7$, find a quadratic polynomial whose zeroes are $2\alpha + 3\beta$, $3\alpha + 2\beta$.

I. MULTIPLE TYPE QUESTIONS [MCQ'S 1 MARK EACH]

DIFFICULT LEVEL

1. If α, β are the zeroes of the polynomial $f(x) = px^2 - 2x + 3p, \alpha + \beta = \alpha\beta$, then the value of p is:

a)
$$\frac{-2}{3}$$
 b) $\frac{2}{3}$ c) $\frac{1}{3}$ d) $\frac{-1}{63}$

- 2. If the zeroes of the quadratic polynomial $f(x) = (k^2 + 4)x^2 + 7x + 4k$ are reciprocal of each other, then the value of k is:
 - a) 1 b) -1 c) 2 d) -2
- 3. If α, β are the zeroes of the polynomial $f(x) = ax^2 5x + c$, then the value of $\alpha + \beta = \alpha\beta = 10$ then :

a)
$$a = 5, c = \frac{1}{2}$$
 b) $a = 1, c = \frac{5}{2}$ c) $a = \frac{5}{2}, c = 1$ d) $a = \frac{1}{2}, c = 5$

- 4. If one of the zeroes of a quadratic polynomial of the form x²+ax + b is the negative of the other, then it
 a) has no linear term and the constant term is negative.
 b) has no linear term & the constant term is positive.
 c) can have a linear term but constant term is negative.
 d) can have a linear term but constant term is positive.
- 5. If x + 2 is a factor of $x^2 + ax + 2b$ and a + b = 4, then :

II. ASSERTION AND REASON TYPE QUESTIONS [1 MARK EACH]

DIFFICULT LEVEL

Each of the following examples contains STATEMENT -1 (ASSERTION) and STATEMENT-2 (REASON) has following four choices (a), (b), (c), and (d), only one of which is the correct answer.

- a) Statement -1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- b) Statement -1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- c) Statement -1 is true, Statement- 2 is false.
- d) Statement -1 is false, Statement- 2 is true.
- 1. Statement-1(Assertion): x^3+x has only one real zero.

Statement-2(Reason): A polynomial of nth degree must have n real zeroes.

III. CASE BASED QUESTIONS

DIFFICULT LEVEL

1. In the below figure, shows the path of a diver, when she takes a jump from the diving board. Clearly, it is a parabola. Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool.

Her height above the water level at any time t in seconds is given by the polynomial $h(t) = -16t^2 + 8t + c$.

Based on the above information answer the following questions:

- a) Find the value of c.
- b) At what time will she touch the water in the pool?
- c) If Geeta's height above the water level is given by p(t) with zeroes -1 and 2, find p(t).

OR

A polynomial q(t) with sum of zeroes as 1 and the product as -6, is modelling Anu's height in feet above the water at any time t, find q(t).

DIFFICULT LEVEL

- 1. Find the zeroes of the quadratic polynomial $f(x) = abx^2 + (b^2 ac)x bc$, and verify the relationship between the zeroes and its coefficients.
- 2. If α , β are zeroes of the quadratic polynomial $2x^2 + 5x + k$, satisfying the relation $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$, then find the value of k for this to be possible.
- 3. If the graph of quadratic polynomial $ax^2 + bx + c$ cuts negative or positive direction of y axis, then what is the sign of c.
- 4. Can the quadratic polynomial $x^2 + kx + k$ have equal zeroes for some odd integer k > 1?
- 5. If (x + a) is a factor of two polynomials $x^2 + px + q$ and $x^2 + mx + n$, then prove that $a = \frac{n-q}{m-n}$

V. SHORT ANSWER TYPE QUESTIONS (SAII) [3 MARKS EACH]

DIFFICULT LEVEL

- 1. If a and b are the roots of the equation $3x^2 4x + 1 = 0$, form the polynomial whose zeroes are a^2/b and b^2/a .
- 2. If α and β are the zeroes of polynomial $x^2 3x + 7$, then form a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
- 3. If α and β are the zeroes of polynomial $25p^2 15p + 2$, then form a quadratic polynomial whose zeroes are $\frac{1}{2\alpha}$ and $\frac{1}{2\beta}$
- 4. If $\alpha \& \beta$ are zeroes of the polynomials $f(x)=x^2+px+45$ such that squared difference of the zeroes is 144 find the value of 'p'.
- 5. Find the zeroes of the polynomials and verify the relation between its zeroes and coefficients:

(i) $P(x) = \sqrt{3}x^2 + 10x + 7\sqrt{3}$ (ii) $P(x) = x^2 - (\sqrt{3} + 1)x + \sqrt{3}$ (iii) $P(x) = 4\sqrt{3}x^2 + 5x - 2\sqrt{3}$

ANSWERS

EASY LEVEL						
I. MCQ	1. c, 2. c,	3. d, 4. c,	5. a			
II. Assertion Reason	1. a					
III. Case Study	a. Parabola	b. –5/3,	c. –8, 1	c.OR x ² - x -	20	
IV. SA I	1. –3, 4,	2. 0, –2,	3. $\sqrt{5}$, $-\sqrt{5}$	4. $3x^2 - \sqrt{3} 2x + $	- 1, 5. –3/2	
V. SA II	1. k = 6, 2. 1					
MEDIUM LEVEL						
I. MCQ	1. c, 2. b,	3. b, 4. b,	5. c			
II. Assertion Reason	1. a					
III. Case Study	a. real numbers, b. 1/4, c. no point on x axis c. OR $px^2 + p^2x - 1$					
IV. SA I	1. $\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$	2. a =3,	3. –84, –7/12			
V SA II.	1. $k = 7$ 2. k	$x(x^2-24x+128)$	3. a = -16	4. $\frac{1}{3}, \frac{7}{3}$ are \sqrt{k}	$=\frac{2}{3}$	
	5. $3x^2 + 10x - $	8	6. $x^2 - 6x - 72$	2 7.2	8. 12	
	9. $\frac{-2}{3}$,	10. k = 0,	11. Sum = 25/2	e, Product = 41, P	oly = $2x^2 - 25x + 82$	
DIFFICULT LEVEL						
I. MCQ	1. b, 2. c,	3. d, 4. a,	5. b			
II. Assertion Reason	1. c					
III. Case Study	a. 48, b. 2 sec, c. t ² -t-2 c. OR t ² -t-6					
IV. SA I	1. c/b, $-b/a$ 2. k = 2 3. $-ve$ direction $\rightarrow c -ve$, $+ve$ direction $\rightarrow c +ve$ 4. No					
V. SA II	1. 9x ² – 28x + 3	3 2. 7x ² -	$-3x + 1$ 3. $8p^2$ -	-30p+25	4. $(\alpha - \beta)^2 = 144$	
	5. (i) 13. −√3,−	$-\frac{7}{\sqrt{3}}$ (ii) 1, $\sqrt{3}$	(iii) $\frac{\sqrt{3}}{4}$	$\frac{1}{3}, \frac{-2}{\sqrt{3}}$		

EXEMPLAR POINT®: B-1/30, MALVIYA NAGAR PH. 46115454, 40504855, 8800483484

27