Class- X Session- 2024-25

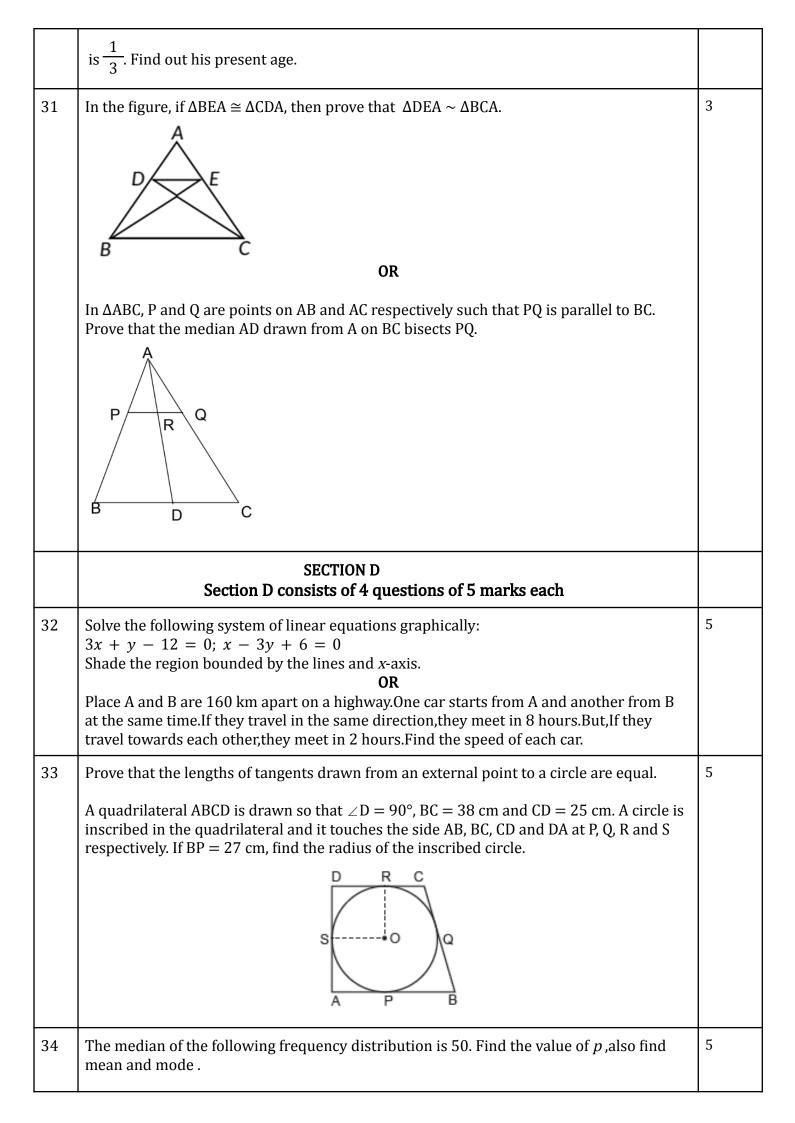
Subject- Mathematics (Standard)

SP2

Maximum Marks : 80

Time Allowed: 3 Hrs. General Instructions:

Read the following instructions carefully and follow them:


- 1. This question paper contains 38 questions.
- 2. This Question Paper is divided into 5 Sections A, B, C, D and E.
- 3. In Section A, Questions no. 1-18 are multiple choice questions (MCQs) and questions no. 19 and 20 are Assertion- Reason based questions of 1 mark each.
- 4. In Section B, Questions no. 21-25 are very short answer (VSA) type questions, carrying 02 markseach.
- 5. In Section C, Questions no. 26-31 are short answer (SA) type questions, carrying 03 marks each.
- 6. In Section D, Questions no. 32-35 are long answer (LA) type questions, carrying 05 marks each.
- 7. In Section E, Questions no. 36-38 are case study based questions carrying 4 marks each with sub parts of the values of 1, 1 and 2 marks each respectively.
- 8. All Questions are compulsory. However, an internal choice in 2 Questions of Section B,2 Questions of Section C and 2 Questions of Section D have been provided. An internal choice has been provided in all the 2 marks questions of Section E.
- 9. Draw neat and clean figures wherever required.
- 10. Take $\pi = 22/7$ wherever required if not stated.
- 11. Use of calculators is not allowed.

	SECTION A Section A consists of 20 questions of 1 mark each.	
S.NO		MARKS
1	If tangents <i>PA</i> and <i>PB</i> from a point P to a circle with centre O are inclined to each other at an angle of 80° then $\angle POA =$ a)50° b)60° c)70° d)80°	1
2	 Which of the following statements is not true? a) A number of secants can be drawn at any point on the circle. b) Only one tangent can be drawn at any point on a circle. c) A chord is a line segment joining two points on the circle d) From a point inside a circle only two tangents can be drawn. 	1
3	A solid sphere is cut into two hemispheres. The ratio of the surface areas of sphere to that of two hemispheres taken together, is : a) 1 : 1 b) 1 : 4 c) 2 : 3 d) 3 : 2	1
4	For some data x_1, x_2, \dots, x_n with respective frequencies f_1, f_2, \dots, f_n the value of $\sum_{i=1}^{n} f_i(x_i - \overline{x}) \text{ is equal to :}$ a) $n\overline{x}$ b) 1 c) Σf_i d) 0	1
5	AD is a median of $\triangle ABC$ with vertices $A(5,-6)$, $B(6,4)$ and $C(0,0)$. Length AD is equal toa) $\sqrt{68}$ unitsb) $2\sqrt{15}$ unitsc) $\sqrt{101}$ unitsd) 10 units	1

6	The roots of the quadratic equation $x^2 + x - 1 = 0$ area) Irrational and distinctb) not realc) rational and distinctd) real and equal	1
7	If one of the zeroes of the quadratic polynomial $(k - 1)x^2 + kx + 1$ is (-3) , then the value of k is a) $\frac{4}{3}$ b) $-\frac{4}{3}$ c) $\frac{2}{3}$ d) $-\frac{2}{3}$	
8	If $\sin \theta = \frac{3}{5}$, then the value of $\frac{\csc \theta - \cot \theta}{2 \cot \theta}$ is a) $\frac{1}{2}$ b) $\frac{1}{3}$ c) $\frac{1}{8}$ d) $\frac{1}{5}$	1
9	The pair of equations $3^{x+y} = 81$, $81^{x-y} = 3$ has (a) no solution (b) $x = 2$, $y = 2$ (c) infinitely many solutions (d) $x = 2\frac{1}{8}$, $y = 1\frac{7}{8}$	1
10	A tank is made of the shape of a cylinder with a spherical depression at one end. The height of the cylinder is 1.45m and radius is 30 cm. The total surface area of the tank is $a)30m^2$ b) $3.3m^2$ c) $30.3m^2$ d) $3300m^2$	1
11	If the common difference of an A.P. is 5, then $a_{18} - a_{13}$ is a) 5 b) 20 c) 25 d) 30	1
12	If $\sqrt{3}tan2\theta = 3$, $0^{\circ} < 2\theta < 90^{\circ}$, then the value of $sin\theta + \sqrt{3}cos\theta$ is a) 2 b) $\sqrt{3}$ c) $\frac{\sqrt{3}+1}{\sqrt{2}}$ d) 1	1
13	A box has 10 equal sized cards. Of the 10 cards, 4 are blue, 3 are green, 2 are yellow and 1is red. If a card is randomly drawn from the box, which is the colour that the card is mostlikely to have?a) Redb)Bluec)Greend) Yellow	1
14	The graph of a quadratic polynomial $p(x)$ passes through the points $(-6, 0), (0, -30), (4, -20)$ and (6.0) . The zeroes of the polynomial are a) $-6, 0$ b) 4, 6 c) $-30, -20$ d) $-6, 6$	1
15	A well-planned locality has two straight roads perpendicular to each other. There are 5 lanes parallel to Road - I. Each lane has 8 houses as seen in figure. Chaitanya lives in the 6th house of the 5th lane and Hamida lives in the 2nd house of the 2nd lane. What will be the shortest distance between their houses? y_{\uparrow} (6,5) f_{\downarrow} (6,5) f_{\downarrow} (6,5) f_{\downarrow} (6,5) f_{\downarrow} (6,5) f_{\downarrow} (6,5) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,1) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,1) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,1) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,2) f_{\downarrow} (2,1) f_{\downarrow} (2,2) f_{\downarrow} (3,2) f_{\downarrow} (3,2) f_{\downarrow} (3,2) f_{\downarrow} (4,2) f_{\downarrow} (4,2) f_{\downarrow} (4,2) f_{\downarrow} (4,2) f_{\downarrow} (5,2) f_{\downarrow} (5,2) f_{\downarrow} (5,2) f_{\downarrow} (5,2) f_{\downarrow} (5,2) f_{\downarrow} (5,2) f_{\downarrow} (5,2) f_{\downarrow} (5,2) $f_{$	1
16	If $\triangle ABC \sim \triangle EDF$ and $\triangle ABC$ is not similar to $\triangle DEF$, then which of the following is not	1

	true?a) $BC \cdot EF = A C \cdot FD$ b) $AB \cdot EF = AC \cdot DE$ c) $BC \cdot DE = AB \cdot EF$ d) $BC \cdot DE = AB \cdot FD$										
17	The distribution below gives the marks obtained by 80 students on a test:							1			
	Marks	Less than 10	Less than 20	Less than 30	Less than 40	Less than 50	Less than 60	-			
	No. of Students	3	12	27	57	75	80				
	The upper limit of a) 30	the modal c b) 40	lass of this (c) 5		i is: d) 60						
18	Two dice are throw multiple of 4 is	n together.	The probab	ility that th	e sum of tv	vo numbers v	will be a	1			
	b) $\frac{1}{2}$	b) $\frac{1}{3}$	c) -	<u>1</u> 8	d) $\frac{1}{4}$						
19	DIRECTION: In question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R) . Choose the correct option <i>Statement A (Assertion):</i> The length of the minute hand of a clock is 7 cm.										
	Then the area swept by the minute hand in 5 minutes is $12\frac{5}{6}cm^2$ <i>Statement R(Reason)</i> : The length of an arc of a sector of angle θ and radius r is										
		-	$l = \frac{\theta}{180^{\circ}} \times$		0						
	 (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true. 										
20	D DIRECTION: In question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R) . Choose the correct option <i>Statement A (Assertion):</i> Two positive numbers have 18 as their H.C.F							1			
	and 380 as their L.C.M. <i>Statement R(Reason)</i> : L.C.M. is always completely divisible by H.C.F.										
	 (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the 										
	(c) Assertion (A) (d) Assertion (A)	on of assert is true but r	ion (A) eason (R) is	s false.		5 not the					
		ection B co	SECTION	В	of 2 marks	seach.)					
21	Find the coordinate	es of the poi	nt of trisect	ion of the li	ne segmen	t joining (1,	–2) and	2			

	(-3, 4).	
22	A box contains cards numbered 11 to 123. A card is drawn at random from the box. Find the probability that the number on the drawn card is a square number	2
	OR	
	In a pack of 52 playing cards one card is lost. From the remaining cards, a card is drawn	
	at random. Find the probability that the drawn card is queen of heart, if the lost card is a	
	black card.	
23	The LCM of two numbers is 14 times their HCF. The sum of LCM and HCF is 600. If	2
	one number is 280, then find the other number.	
	OR	
	If the HCF of 450 and 216 is expressible in the form $23m - 51$, then find the value of m	
24	Find the points on the <i>x</i> -axis which are at a distance of $2\sqrt{5}$ from the point (7, -4).	2
25	If $4\cot^2 45^\circ - \sec^2 60^\circ + \sin^2 60^\circ + p = \frac{3}{4}$, then find the value of p.	2
	SECTION C Section C consists of 6 questions of 3 marks each.	
26	Prove that	3
	$\frac{\sin \theta}{\cot \theta + \csc \theta} = 2 + \frac{\sin \theta}{\cot \theta - \csc \theta}$	
27	Prove that $\sqrt{5}$ is an irrational number	3
28	Find the area of the minor segment of a circle of radius 14 cm, when its central angle	3
	is 60° (Take $\sqrt{3} = 1.73$). OR	
	A square park has each side of 100 m. At each corner of the park, there is a flower bed in	
	the form of a quadrant of radius 14 m as shown in the given figure. Find the area of the	
	remaining part of the park. [Take $\pi = 22/7$]	
	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
29	$\leftarrow 100 \mathrm{m} \rightarrow$	3
_ /	If the zeroes of the polynomial $x^2 + px + q$ are double in value to the zeroes of	
	$2x^2 - 5x - 3$, find the value of <i>p</i> and <i>q</i>	
30	The sum of the reciprocals of Rehman's ages in years 3 years ago and 5 years from now	

				1				Т				
		Class				Frequency						
		0 - 20 20 - 40 40 - 60 60 - 80 80 - 100			17 <i>p</i> 32 24 19							
						OR						
	The media is 100.	an of the	e followi	ing data	ı is 52.5.		e values	s of x an	d y, if th	e total i	frequency	7
	C.I.	0 - 10	10 – 20	20 - 30	30 - 40	40 – 50	50 - 60	60 – 70	70 – 80	80 – 90	90 - 100	
	Frequency	2	5	x	12	17	20	у	9	7	4	
35	The angle of elevation of a jet fighter from a point A on the ground is 60°. After a flight of 15 seconds, the angle of elevation changes to 30°. If the jet is flying at a speed of 720 km/hr, find the constant height. ($\sqrt{3} = 1.732$).											5
		Cas		CTION I v based	E questio	ons are	compu	lsory.				
36	Aahana, being a plant lover, decides to convert her balcony into a beautiful garden full plants. She bought a few plants with pots for her balcony. She placed the pots in such way that the number of pots in the top row is 2. In the next row there are 5 pots. In t 3rd row from the top there are 8 pots and so on.											
		from the	top the				In the n	· •	there a	re 5 po		
		from the	top the				In the n	· •	there a	re 5 po		
		From the	top the				In the n	· •	there a	re 5 po		
	On the ba			re are 8	B pots an	nd so on	In the n	ext row		re 5 po		
	On the ba (i)		above	re are 8	B pots an	nd so on 7 er the fo sent the	In the n	ext row questio	ons. s in diffe		ts. In the	1
	On the ba (i) V (ii) I	sis of the Vrite an tarting f s it poss ustify yo	A.P who from the ible to a our ansy	re are 8	B pots and the second s	nd so on 7 er the fo sent the the con in a rov	In the n	questio er of pot fference patterr	ons. s in diffe e. n is cont	erent ro inued?	ts. In the	
	(i) V (ii) I (iii) (A)	sis of the Vrite an tarting f s it poss ustify yo	A.P who from the ible to a our answ	re are 8	a pots and a pots a pots and a pots pots a pots a pots a pots a pots po	nd so on 7 7 er the fo sent the the con in a rov of pots ,	In the n	ext row questioner of pot fferences patterr and the ex	ons. s in diffe e. n is cont xpressio	erent ro inued?	ts. In the	1

37	Anika is studying in class X. She observed two poles DC and BA. The heights of these poles are x metre and y metre respectively as shown in figure:	
	These poles are z m apart and 0 is the point of intersection of the lines joining the top of each pole to the foot of the opposite pole and the distance between point 0 and L is d.	
	Based on the above information, answer the following questions:(i) Is ΔCAB and CLO? Justify	1
	(ii) If $x = y$, prove that BC: DA = 1 : 1.	1
	(iii)(A) If $CL = a$, then find a in terms of <i>x</i> , <i>z</i> and <i>d</i> .	2
	OR (iii)(B) If $AL = b$, then find b in terms of y, z and d.	
38	Emily purchased a spinner from a shop, which is of the shape as shown in the figure, in which the right circular cone and hemisphere lie on opposite sides of a common base of length 3.5 m. Cylindrical box circumscribing them in this position. Now, answer the following questions.	
	$H \longrightarrow G$	1
		2
	$A \xrightarrow{F} \qquad h \xrightarrow{F} \qquad C 3.5 \text{ m}$	1
	≺ 3.5 m →	
	Based on the above information, answer the following questions: (i) Find the volume of the conical part	
	(ii)Find the volume of the cylinder that circumscribes the cone and hemisphere. (iii)(A) Find the additional space enclosed by the cylinder.	
	OR (iii)(B) Find the ratio of the curved surface areas of the cone and hemisphere.	