

THE INDIAN SCHOOL PRE-BOARD EXAMINATION (2024-25) MATHEMATICS (041)

SET A

Time allowed: 3 hours

Maximum Marks: 80

No. of printed pages: 9

(1) This question paper consists of 38 questions divided into 5 sections A, B, C, D and E. (ii) Section A comprises 20 questions carrying I mark each including Multiple Choice questions,

Assertion and Reasoning based questions.

- (HI) Section B comprises 5 questions carrying 2 marks each.
- (IV) Section C comprises 6 questions carrying 3 marks each.
- (vi) Section E comprises 3 case study-based questions of 4 marks each with sub parts of the values of
- (vii) All questions are compulsory. However internal choices have been provided in some of the questions.
- (viii) Draw neat figures wherever required.

		SECTION-A Multiple Choice Questions (20 Marks)		
Q No.		Question	Marks	
1		k is 12 ⁴ where k is a positive integer. The value of k is	1	
	(a) 2 ² (b) 2 ⁶	(c) 2 ⁴ (d) 2 ⁸		
2	The value of a for which the polynomial $p(x) = x^2 + 4x + a$ is a perfect square, is			
	(a) 1	(c) 4		
1	(b) 9	(d) 10		
T	he sum of the first 10	terms of the A.P: a - 8, a-2, a+4,is	1	
(a	a) 190-10a	(c) 10a-190		
) 190+10a	(d) 10a+180		
Tv	vo concentric circles	are of radii 6 cm and 8 cm. The length of the chord of the		
lar	ger circle which tou	ches the smaller circle is		
(a)	12 cm	(c) 28 cm	1 12	
	2√7 cm	(d) 4√7 cm		

		(cosθ) + 2 (cosθ)	12:30		
		on the value of (coso)	400		
5	$ \text{If } \sin\theta + (\sin\theta)^2 = 1, \text{the}$	the value of $(\cos\theta)^8 + 2(\cos\theta)^6 + (\cos\theta)^4$ is (c) 2			
	(a)1	(d) 4	1		
	(b) 3	reen a flashlight and a wall as shown in the figure. The von the wall, if the rod is 45 cm from the wall and 15 cm			
6		v on the wall, if the road			
	from the light is	shadow			
		shadow			
		(c) 48 cm			
	(a) 75 cm (b) 96 cm	(d) 60 cm	1		
-	If the area of a sector of a circle is $\frac{5}{18}$ of the area of that circle, then the central angle				
7	of the sector is				
	(a) 100° (b) 105°	(c) 110° (d) 120°			
	1000	A STATE OF THE PARTY OF THE PAR	1		
8	If the length of the shad elevation of the sun wil	flow of a man is $\frac{1}{\sqrt{3}}$ times its height, then the angle of			
	(a) 0°	(c) 30°			
	(b) 45°	(d) 60°			
	From the top of a pillar, the angle of depression of a point on the ground is 60°. If the distance of the point from the foot of the pillar is 16 m, then the height of the pillar is				
	(a) 12 m	(c) 8√3 m			
	(b) 16 m	(d) 16√3 m			
	The length of an arc of a	sector of a circle with radius 21 cm, subtending an angle	1		
	(a) 12.6 cm (b) 20.8 cm	(c) 16.5 cm (d) 18.4 cm			
N/A			-		

	I Withe radii of then the ratio	bre glinden	are in the sec	2 2 - 14 -			1.	
	then the rate (a) 3.4	of their volum	tes will be	.3 : 2 and their	heights are in	file tarto 4.00		
L	(5) 9.3		(c) 3:1 (d) 1:3				1.	
1	2 Two friends: date of birth	were been in t	the year 1996.	The probabil	ity that they l	have the same		1
	(a) 1/222		$(c)\frac{2}{3at}$					1
	(b) ±		$(d)\frac{1}{366}$			bne (a	B(5, 1	1
13		nes of point P	on the x-axis	equidistant fi	rom points A	(-1,0)		
	1-7-		(c) (0.					
	(a) (2,0) (b) (3,0)		(d) (2	(2)				-
14	The probability	v of getting 5	3 Fridays in a	leap year is				1
			(c) 4/2					-
	(a) ³ / ₇ (b) ⁵ / ₇		$(d)^{\frac{2}{3}}$					1
						-6		1
5	The coordinate	s A(7, 10), B	(-2,5) and	C(3, -4) are	the vertice	s or eles triangle		100
- 1	(a) a right-angle (b) an equilater	ed triangle al triangle			(d) a scalen	e triangle		
				13-1-0	n ha campa	d out of a sc	olid	1
7 5	he volume of the	ne largest rij adius r is	ght-circular	cone that co	in be carve	u out of a s		
(a	$\frac{4}{3}\pi r^3$		(c) $\frac{2}{3}\pi$	₇ 3				1
	$\frac{3}{3}\pi r^3$		(d) 4m					1
				. 22.40	ah an			1
-	he modal class	of the data	given belov			1 10 50	50-60	7
If ti	ass Interval	0-10	10-20	20-30	30-40	40-50	50-00	11
		9	14	7	a	13	12	1
Cla	quency	1						

		a value of x ³ - 3 is					
1	18	If for an event E, $P(E) + P(E') = x$, then the value of $x^3 - 3$ is					
		(a) 1	1.10				
		(b) 2 (a) -2	Name of				
		10 and 20 a statement of Assertion (A) is ions					
		In the question numbers 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option. statement of Reason (R) and reason (R) are true and reason (R) is the correct explanation of assertion (A). (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).					
		explanation + + + + + + + + + + + + + + + + + + +					
		(c) Assertion (A) is folso but reason (R) is true.					
100	19	(d) Assertion (A) is false but to ABC , if $DE \parallel BC$, $AD = 2cm$, $AE = (x + 1) cm$, $DB = (x + 1) cm$ and $ASSERTION$ (A): In ABC , if $DE \parallel BC$, $AD = 2cm$, $AE = (x + 1) cm$, $DB = (x + 1) cm$ and $EC = 2 cm$, then $x = 1$.					
	- 1						
		-					
	B	Reason (R): If a line is drawn parallel to one side of a triangle to intersect the					
	F	Reason (R): If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, the other two sides are divided in the same ratio. (a)					
20	1	the same ratio. a) ssertion(A): The mid-point of a line segment divides the line segment in the	1				
20	As	the same ratio. @)	1				
20	As	ssertion(A): The mid-point of a line segment divides the line segment in the ratio 1: 1. ason (R): The ratio in which the point (-3, k) divides the line segment joining	1				
0.	As	other two sides at distinct points, the other two sides at the same ratio. a) ssertion(A): The mid-point of a line segment divides the line segment in the ratio 1: 1. ason (R): The ratio in which the point (-3, k) divides the line segment joining the points (-5, 4) and (-2, 3) is 1:2. SECTION-B	1 Mark				
0.	As	other two sides at distinct points, the other two sides at distinct points at distinct points, the other two sides at distinct points at distinct					

23	If $2x + y = 23$ and $4y = 23$	
	If $2x + y = 23$ and $4x - y = 19$, then find the value of $(5y - 2x)$ and $(\frac{y}{x} - 2)$.	2
	If the system of linear equations $2x + 3y = 7$ and $2ax + (a + b)y = 28$ have an infinite number of solutions, then find the values of a and b.	
24	The Red queen and the black jack are removed from a pack of 52 playing cards. A card is drawn at random from the remaining cards, after reshuffling them. Find the probability that the drawn card is	
	(i) a face card (ii) a non red card	
25	If the perimeter of the quadrant of a circle is 16.5 cm, then find the radius of the circle. OR	2
	A pendulum swings through an angle of 60° and describes an arc of 15.4 cm in length. Find the length of the pendulum.	
	SECTION-C (12 Marks)	
Q No	Otion	Marks
26	No.	
27	Find the area of a rhombus if its vertices $(3, 0)$, $(4, 5)$, $(-1, 4)$ and $(-2, -1)$ are taken in order.	3
	Point P divides the line segment joining the points A(2, 1) and B(5, -8) such that $\frac{AP}{AB} = \frac{1}{3}$. If P lies on the line $2x - y + k = 0$, then find the value of k.	1
28	Draw the graphs of the equations $y = -1$, $y = 3$, and $4x - y = 5$. Shade quadrilateral formed by the lines and the y-axis. Also, calculate the area of quadrilateral.	the
I	If the roots of the equation $(a^2+b^2)x^2 - 2(ac+bd)x + (c^2+d^2) = 0$ are equal prove that $\frac{a}{b} = \frac{c}{d}$.	
F	from a window 34 m high above the ground of a house on a street, the a epression of the top and the foot of a lamp post on the opposite side of the epression of the top and the foot of a lamp post on the opposite side of the epression of the top and 45° respectively. Find the height of the lamp post.	ngle of e stree
	OR	

There is a small island in the middle of a 100 m wide river and a tall tree stands on the laboratory that two banks and in the Island. P and Q are points directly opposite each other on the two banks and in line with the tree. If the angles of elevation of the top of the tree from P and Q are 30° and 45° respectively, find the height of the tree. In the given figure, AB and CD are tangents to the circles whose centres are P and Q respectively. If PQ = 18 cm, QD = 12 cm, AE = 4 cm and FC = 8 cm, then find the 31 value of AB + CD. SECTION-D (10 Marks) Marks Questions Q No. (i) Prove that (ii) Prove that $2[(\sin A)^6 + (\cos A)^6] - 3[(\cos A)^4 + (\sin A)^4] + 1 = 0$. 5 A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segment BD and CD are of lengths 10 cm and 8 cm respectively. Find the lengths of 33 the sides AB and AC, if the area of the triangle ABC is 90 cm2. 10 cm OR If a, b and c are the sides of a right-angled triangle, right angled at C, where c is the hypotenuse, then prove that the radius r of the circle which touches the sides of the triangle is given by $r = \frac{a+b-c}{2}$.

Based on the above information, answer the following questions.

- (i) How many throws did Sanchita practice on the 11th day of the camp?
- (ii) How many throws did she do during the entire camp of 15 days?
- (iii) What should be Sanchita's throw distance at the end of 6 weeks?

(iii) When will she be able to achieve a throw of 11.16 m?

Case Study 37

The legs of an iron table form two triangles as shown in the picture.

Based on the above information, answer the following questions.

- (i) Are ΔAOB and ΔCOD congruent? If yes, then name the congruency criterion. If no, then justify your answer.
- (ii) If AO = 10 cm, OB = 25 cm, OC = x + 5 and OD = 15 cm, then find the value of
- (iii) Show that the \triangle AOB and \triangle COD are similar. Name the similarity criterion.

(iii) If AO = 30 cm and OD = 45 cm, then find the ratio of the perimeter of ΔAOB and and the perimeter of ΔCOD.

A golf ball is spherical with about 300-500 dimples that help increase its velocity while in play. Golf balls are traditionally white but available in colours also. In the given figure, a golf ball has a diameter of 4.2 cm and its surface has 315 dimples (hemispherical) of radius 2 mm.

Based on the above information, answer the following questions.

- (i) Find the surface area of one dimple.
- (ii) Find the volume of the material dug out to make one dimple.
- (iii) Find the total surface area exposed to the surroundings.

(iii) Find the volume of the golf ball.

OR