HALF YEARLY EXAMINATION 2024-25

Mathematics

Time Allowed: 3 Hours

Class-11

Maximum marks: 80

General Instructions:

- 1. This question paper contains- five sections A, B, C, D and E. Each section is compulsory.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 very short answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 short answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 long answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

	assessment (4 marks each) with sub parts.	Marks
Sr.		
No.	SECTION-A	
•	If $n(A) = 54$, $n(B)=69$ and $n(AUB)=83$, then $n(B \cap \overline{A}) = 0.69$	1
۱.	a) 29 b)0 clos $x \in \{(x, y): y = x, x \in R\}$ then	1
•	If $A = \{(x, y): y = e^x, x \in R\}$ and $B = \{(x, y): y \in A \subset B\}$ d) $A \cup B = A$ a) $A \cap B = \{(0, 1)\}$ b) $A \cap B = \emptyset$ c) $A \subset B$ d) $A \cup B = A$ If $A - B = \frac{\pi}{4}$ then $(1 + tanA)(1 - tanB) = 0$	1
	a) 1 b) 3 c/s by $f = \{(2,4), (5,6), (8,-1), (10,-3)\}$ and Let f and g be two functions given by $f = \{(2,4), (5,6), (8,-1), (10,-3)\}$ then domain of $(f-g)$ is	1
	a) {5} b) {2,7,6,16,22}	1
	Range of $f(x) = \frac{1}{1 - 2\cos x}$ is a) $\left[\frac{1}{3}, 1\right]$ b) $\left[-1, \frac{1}{3}\right]$ c) $\left(-\infty, -1\right] \cup \left[\frac{1}{3}, \infty\right)$ d) $\left[-\frac{1}{3}, 1\right]$	
	What is the conjugate of $(-2-i)$	1
	a) $-2-1$ b) $2-x^2+1$ then $\{x: f(x)=-15\}$ is	1
L	Let $f: R \to R$ be defined by $f(x) = x + 1$ then $f(x) = x + 1$ t	1
L'	or $f(x) = \begin{cases} k; x = 2 \end{cases}$, that $x \to 2$ a) All real values. a) $(x) = (x) + (x$	1

	frequency distribution table?	
	a) $\frac{\sum f_i(x_i-\overline{x})}{N}$ b) $\frac{\sum f_i(x_i-\overline{x})^2}{N}$ c) $\frac{\sqrt{\sum f_i(x_i-\overline{x})^2}}{N}$ d) none	1
).	$\lim_{x \to \pi/2} \frac{\tan 2x}{\frac{\pi}{2} - x} = 0$	
4	a) 2 b) $-1/2$ c) 0	1
1.	The value of $\frac{\cos 3x}{2\cos 2x-1} =$ a) $\cos x$ b) $\sin x$ c) $\tan x$ d) none of these.	1
12.	$\frac{tan80^0 - tan10^0}{tan70^0} =$	
	a) 0 b) 1 c) 2 d) 3	1
13.	$(\sqrt{-2})(\sqrt{-5})=$ a) $\sqrt{10}$ b) $-\sqrt{10}$ c) i $\sqrt{10}$ d) none of these	1
14.	If $\frac{1}{r-2} \le 1$; then $x \in$ $(3, \infty)$	
	a) $[3,\infty)$ b) $(-\infty,2)$ c) $(-\infty,2) \cup [3,\infty)$	1
15.	If $\frac{ x-2 }{x-2} \ge 0$, then $x \in$ a) $[2,\infty)$ b) $(2,\infty)$ c) $(-\infty,2)$ d) $(-\infty,2]$	1
16.	$ f(x) = x then f'(-\frac{1}{2})$,
- 1	a^{-5} c) 1 c) 0	1
7.	For the curve $\sqrt{x} + \sqrt{y} = 4$, $\frac{dy}{dx}$ at $(\frac{1}{4}, \frac{1}{4}) =$	
	a) -1 b) 1 c) 2 $a_1/2$	1
18.	The derivative of $\log x$ with respect to $\frac{1}{x}$ a) $\frac{-1}{x^3}$ b) $\frac{-1}{x}$ c) $-x$ d) $\frac{1}{x}$	
	ASSERTION- REASON BASED QUESTIONS	
	In the following questions, a statement of assertion(A) is followed by a statement of	
F	Reason(R). Choose the correct answer out of the following choices, (a) Both A and R are true and R is the correct explanation of A.	7
	(b) Both A and R are true but R is not correct explanation of A.	
	(c) A is true but R is false.	
	(d) A is false but R is true.	

	$\frac{\tan^2 x}{2}$	1
· \ A	Assertion (A): $\lim_{x \to 0} \frac{\tan^2 x}{x} = 2$	s
1	Reason(R): $\lim_{x \to \infty} \frac{\sin x}{x} = 0$ $\lim_{x \to \infty} \frac{\sin x}{x} = 0$ $\lim_{x \to \infty} \frac{1}{x} = 0$ then $x - y = \frac{\pi}{4}$	1
0.	Assertion(A): If $tanx = \frac{u}{a-1}$ & $tany = \frac{1}{2a-1}$	
	Reason(R): $tan(x - y) = \frac{tan}{1 + tanxtany}$	
	SECTION-B	2
21.	Let $R = \{(x, y) : x + 2y = 10 : x, y \in A\}$ be a relation defined on a set A of first ten	
	Determine its Domain and Kange.	
22.	Find the value of $sin \frac{x}{2} \& cos \frac{x}{2}$ if $sin x = \frac{\sqrt{5}}{3}$ and x lies in 2^{no} quadrant.	2
23.	Represent the solution of the inequality $\frac{2x+1}{7x-1} > 5$ on real number line.	2
		2
24.	Evaluate: $\lim_{x\to 0} \frac{\cos 3x - \cos x}{x^2}$ Find the complex number which when multiplies by $5+3i$ gives $3-4i$.	2
25.	Find the complex number which when the SECTION-C	
-		3
26.	Find the Domain and Range of the function $f(x) = \frac{x^2 - x}{2x + x^2}$	3
27.	Prove that : $sin20^{\circ}$. $sin40^{\circ}$. $sin60^{\circ}$. $sin80^{\circ} = \frac{3}{16}$	
28.	Solve the system of inequations graphically.	3
	$2x + y > 2 \cdot x - y \le 1$; $x + 2y \le 8$; $x, y \ge 0$	3
29.	Find the modulus and the multiplicative inverse of the complex number $Z = \frac{1+2i}{1+(1-i)^2}$	
30.	Let $L=[-6,4]$, $M=[-3,-1)$ and N be the set of natural numbers, then find	3
	a) $L-M$ b) $L\cap M\cap N$ c) $(M-L)\cup L'$	
31.	Find $\frac{dy}{dx}$ at $x=1, y=\frac{\pi}{4}$, if $sin^2y+cosxy=k$.	3
	SECTION-D	
2.	Evaluate: a) $\lim_{x \to 2} \left(\frac{2^{x+2}-16}{4^x-16} \right)$ b) $\lim_{x \to \frac{-\pi}{6}} \frac{\sqrt{3} sinx + cosx}{x + \frac{\pi}{6}}$	5
3. F	Find $\frac{dy}{dx}(a)$ if $y = (\log x)^{\cos x} - \frac{x^2 - 1}{x + 1}$	5
	(b) if $x = a(cost + tsint)$; $y = a(sint - tcost)$.	
. c	alculate the Mean and Variance for the following distribution.	5

1	Marks	20-30	30-40	40-50	50-60	60-70	70-80	80-90	
•	No. of students	3	6	13	15	14	5	4	
5.	Prove that		$\frac{1}{\cos 8x} = \cos 8x$ $\sin A = \cos 8x$			nat tan(A	$+\alpha)=\frac{m+n}{m-n}$	tanα.	5
				SECTIO	DN-E				
÷	two sub-p	arts. First	es of 3 case case study o sub-parts o	question ha	s three sub	questions o	of 4 marks e 2 nd and thir	ach with d case study	1+1+2
36.	Case-stud	ly 1:						ALTO	1+1+2
	-								
	three type	s of drinks ater, 10 st d T. 12 had Find the	as Milk(M)	, coffee(C) all the thre nad C only students w	and Tea(1) ee drinks, 2 and 8 had T no did not t ho preferre	o had M and only. Take any dred Milk and	id C, 30 had ink coffee but	t not tea.	1

Case-study 3:

A potter made a mud vessel, where the shape of the pot is based on a function

×1.

f(x) = |x - 3| + |x - 2|; where f(x) represents the height of the pot in feet.

- a) What will be the height if 2 < x < 3. Also find the minimum height of the pot for all $x \in R$.
 - b) Redefine the given function f(x) for $x \in [0, 5]$.

.)

~