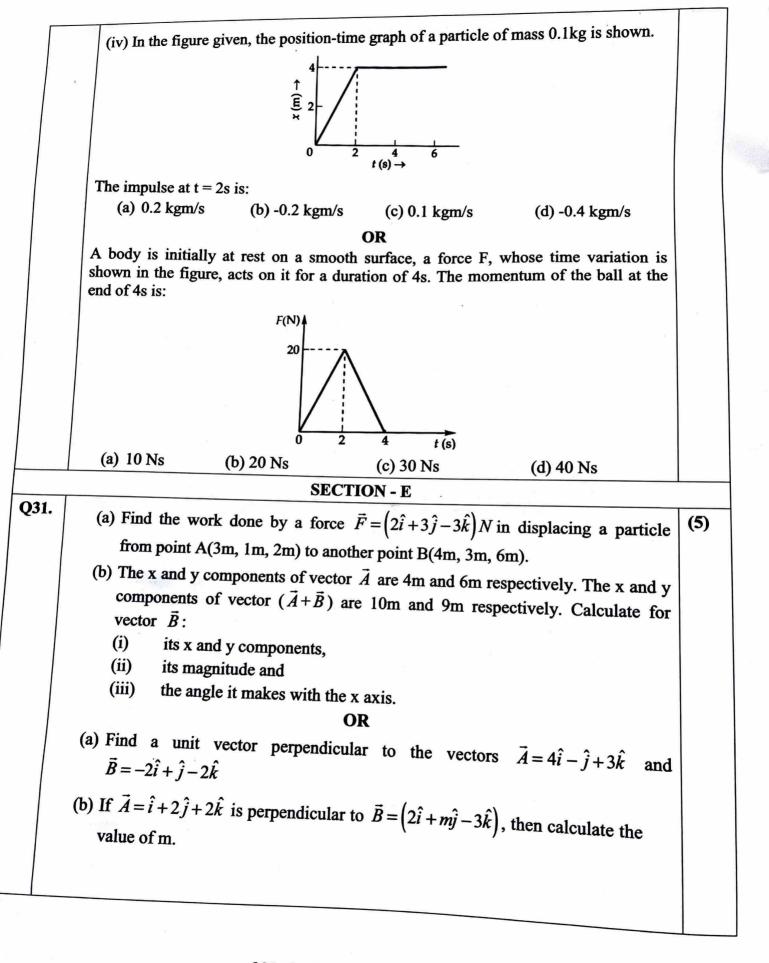
SS3 HALF YEARLY EXAMINATION 2024-25 **PHYSICS (Set-2)**

Time: 3 hours

M. M.: 70

- **General Instructions:**
- There are 33 questions in all. All the questions are compulsory. i).
- ii). This question paper has five sections: Section A, Section B, Section C, Section D and
- iii). All the sections are compulsory.
- iv). The section A contains sixteen questions, twelve MCQs and four Assertion Reasoning based questions of one mark each, The Section B contains five questions of two marks each. The section C contains seven questions of three marks each. The section D contains two case study based questions of four marks each and the Section E contains three long answer questions of five marks each.
- v). There is no overall choice. However, an internal choice has been provided in one question in section B, one question in section C, one question in each CBQ in Section D and all three questions in section E. You have to attempt only one of the choices in such questions. The use of a calculator is not allowed.


	SECTION - A	1		
Q1.	What is the number of significant figures in the measurement of 35.000 m?(a) 2(b) 5(c) 3(d) 4	(1)		
Q2.	A body travels along the circumference of a circle of radius 2m with a linear velocit of 6m/s. Then its angular velocity is: (a) 6 rad/s (b) 3 rad/s (c) 2 rad/s (d) 4 rad/s	y (1)		
Q3.	The path of a particle is given by the expression $Y = at + bt^2$, where a and b at constants. Y is the displacement at time t, it's velocity at any instant is given by: (a) $a + 2bt$ (b) zero (c) 2hadrs (d) 4 rad/s	re (1)		
Q4.	If two forces $(6\hat{i} + 8\hat{j})$ N and $(4\hat{i} + 4\hat{j})$ N are acting on a mass of 2kg, then the acceleration produced in the body in m/s ² will be: (a) $5\hat{i} + 6\hat{j}$ (b) $10\hat{i} + 12\hat{j}$ (c) $6\hat{i} + 12\hat{j}$ (d) $2\hat{i} + 3\hat{j}$			
25.	A particle is restricted to move on a straight line path. It returns to the starting poi after 10s. The total distance covered by the particle during this time is 30m. Which the following statements about the motion of the particle is TRUE? (a) The displacement of the particle is zero (b) The displacement of the particle is 30m (c) The average speed of the particle is 3m/s (d) Both the options (a) and (c)	nt (1) of		

	and ra respectively.	-/			
	Two cars of masses m_1 and m_2 are moving in circles of radii r_1 and r_2 respectively.Their speeds are such that they make complete circles in the same time t. The ratio oftheir centripetal accelerations is:(c) $r_1: r_2$ (d) 1:1(b) $m_1: m_2$				
	f_{1} and m_2 are moving in our circles in the same time				
Q6.	Two cars of masses in a they make complete the (d) 1:1				
	Their speeds are such that the speeds are suc	(1)			
	(b) m ² of measurement and				
	(a) $m_1 r_1 \cdot m_2 r_2$ the units selected in two systems of means				
Q7.	Their speeds are such that they makes their representations is: their centripetal accelerations is: (a) $m_1r_1: m_2r_2$ (b) $m_1: m_2$ (c) $r_1: r_2$ (d) n_1 and n_2 their (a) $m_1r_1: m_2r_2$ (b) $m_1: m_2$ (c) $n_1: n_2 = 0$ (c) $n_1n_2 = u_1u_2$ (d) $n_1 + u_1 = n_2 + u_2$ numerical values, then: (a) $n_1u_1 = n_2u_2$ (b) $n_1u_1 + n_2u_2 = 0$ (c) $n_1n_2 = u_1u_2$ (d) $n_1 + u_1 = n_2 + u_2$ (a) $n_1u_1 = n_2u_2$ (b) $n_1u_1 + n_2u_2 = 0$ (c) $n_1n_2 = u_1u_2$ (d) $n_1 + u_1 = n_2 + u_2$	(1)			
	numerical values, then: (b) $n_1u_1 + n_2u_2 = 0$ (c) n_1n_2 is a probability of the sector of t	、			
	(a) $n_1u_1 = n_2u_2$ (b) n_1u_1 (c) n_1				
Q8.	If u_1 and u_2 are then: numerical values, then: (a) $n_1u_1 = n_2u_2$ (b) $n_1u_1 + n_2u_2 = 0$ (c) $n_1n_2 = u_1u_2$ (d) n_1 (d) n_1 A force is inclined at 60° with the horizontal. If it's horizontal rectangular component is 50N then the vertical component will be: (c) $50N$ (d) 70.7N	(4)			
	A force is inclined at 60 with the will be: is 50N, then the vertical component will be: (c) 50N (d) 70.7N (d) 70.7N	(1)			
	(a) 86.6N (b) 100N				
Q9.	is 50N, then the vertical component with (c) 50N (d) 100N (a) 86.6N (b) 100N (c) 50N The interpretation of a velocity-time graph if it is a line parallel to time axis will be: (a) The body is at rest				
Q.	(a) The body is at rest				
	the swing with collstant vereing				
	(a) The body is moving with uniform as a				
	(d) The body is in non-uniform motion(d) The body is in non-uniform motion	(1)			
	the nump which can pump 200 kg of water to				
Q10.	(c) The body is in non-uniform motion(d) The body is in non-uniform motionThe power of a pump, which can pump 200 kg of water to a height of 50m in 10s, willbe (Take $g=10m/s^2$):(a) 60×10^3 watt(b) 20×10^3 watt(c) 4×10^3 watt(d) 10×10^3 watt(a) 60×10^3 watt(b) 20×10^3 watt(c) 4×10^3 watt(c) 4×10^3 watt(d) 10×10^3 watt				
	be (Take $g=101105$).	(1)			
	(a) $60 \times 10^{\circ}$ watt (b) 20 × 10 minute regular path of radius 28m in 22 seconds. The	(1)			
	1 the and revolution of a circular path of				
011.	Vinay completes one revolution of a circular put				
Q11.	(a) 60×10^3 watt (b) 20×10^3 watt (c) 4×10^3 watt (c)				
Q11.	displacement covered by min data () 0 m (d) 176 m	(1)			
	(a) 936m (b) 56m (c) 0 m (d) 176 m (a) spring of force constant 800N/m has an extension of 5cm. The work done in	(1)			
	(a) 936m (b) 56m (c) 0 m (d) 176 m A spring of force constant 800N/m has an extension of 5cm. The work done in	(1)			
Q11. Q12.	displacement covered by min and (a) 936m(b) 56m(c) 0 m(d) 176 m(a) 936m(b) 56m(c) 0 m(d) 176 mA spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J(b) 32J(c) 8J(a) 16J(b) 32J(c) 8J(d) 24J	ents -			
Q12. Q. no Asserti pelow: a) Bot b) Bot c) A is	displacement covered by min under(a) 936m(b) 56m(c) 0 m(d) 176 mA spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J(b) 32J(c) 8J(d) 24J(a) 16J(b) 32J(c) 8J(d) 24J13 to 16 are Assertion - Reasoning based questions. These consist of two statements ion (A) and Reason (R). Answer these questions selecting the appropriate optionh A and R are true and R is the correct explanation of A true but R is false	ents -			
Q12. Q. no Asserti pelow: a) Bot b) Bot c) A is	displacement covered by minutes (c) 0 m (d) 176 m (a) 936m (b) 56m (c) 0 m (d) 176 m A spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J (b) 32J (c) 8J (d) 24J (a) 16J (b) 32J (c) 8J (d) 24J 13 to 16 are Assertion - Reasoning based questions. These consist of two statements (a) and Reason (R). Answer these questions selecting the appropriate option (b) A and R are true and R is the correct explanation of A (c) A and R are true and R is not the correct explanation of A (b) A and R are true and R is not the correct explanation of A (c) A and R are true and R is not the correct explanation of A	ents - give			
Q12. Q. no Asserti below: a) Bot b) Bot c) A is l) Bot	displacement covered by min and (a) 936m(b) 56m(c) 0 m(d) 176 mA spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J(b) 32J(c) 8J(d) 24J13 to 16 are Assertion - Reasoning based questions. These consist of two statement ion (A) and Reason (R). Answer these questions selecting the appropriate optionh A and R are true and R is the correct explanation of A true but R is falseh A and R are falseA and R are false	ents - give			
Q12. Q. no Asserti- below: a) Bot b) Bot c) A is l) Bot	displacement covered by min and(a) 936m(b) 56m(c) 0 m(d) 176 mA spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J(b) 32J(c) 8J(d) 24J(a) 16J(b) 32J(c) 8J(d) 24J13 to 16 are Assertion - Reasoning based questions. These consist of two statements ion (A) and Reason (R). Answer these questions selecting the appropriate optionh A and R are true and R is the correct explanation of A true but R is falseh A and R are falseAssertion:When a body is dropped or thrown horizontally from the same height, it would reach the ground at the same time.	ents - give			
Q12. Q. no Asserti- below: (a) Bot (b) Bot (c) A is (c) Bot (c) 13.	displacement covered by min and (a) 936m(b) 56m(c) 0 m(d) 176 mA spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J(b) 32J(c) 8J(d) 24J13 to 16 are Assertion - Reasoning based questions. These consist of two statement ion (A) and Reason (R). Answer these questions selecting the appropriate optionh A and R are true and R is the correct explanation of A h A and R are true and R is not the correct explanation of A true but R is falseh A and R are falseAssertion:When a body is dropped or thrown horizontally from the same height, it would reach the ground at the same time.	ents - give			
Q12. Q. no Asserti- below: a) Bot b) Bot c) A is l) Bot 13.	displacement covered by min and (c) 0 m (d) 176 m (a) 936m (b) 56m (c) 0 m (d) 176 m A spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J (b) 32J (c) 8J (d) 24J 13 to 16 are Assertion - Reasoning based questions. These consist of two statements ion (A) and Reason (R). Answer these questions selecting the appropriate option h A and R are true and R is the correct explanation of A h A and R are true and R is not the correct explanation of A true but R is false h A and R are false Assertion: When a body is dropped or thrown horizontally from the same height, it would reach the ground at the same time. Reason: The horizontal velocity has no effect on the vertical motion.	ents - give			
Q12. Q. no Asserti- below: a) Bot b) Bot 1) Bot 13.	displacement covered by min and (c) 0 m (d) 176 m (a) 936m (b) 56m (c) 0 m (d) 176 m A spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J (b) 32J (c) 8J (d) 24J 13 to 16 are Assertion - Reasoning based questions. These consist of two statemed ion (A) and Reason (R). Answer these questions selecting the appropriate option th A and R are true and R is the correct explanation of A th A and R are true and R is not the correct explanation of A th A and R are false A and R are false Assertion: When a body is dropped or thrown horizontally from the same height, it would reach the ground at the same time. Reason: The horizontal velocity has no effect on the vertical motion. Assertion: If the net external force on a body is zero, then its acceleration is zero.	ents - give			
Q12. Q. no Asserti- pelow: a) Bot b) Bot c) A is l) Bot 13.	displacement covered by min arrer(c) 0 m(d) 176 m(a) 936m(b) 56m(c) 0 m(d) 176 mA spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J(b) 32J(c) 8J(a) 16J(b) 32J(c) 8J(d) 24J13 to 16 are Assertion - Reasoning based questions. These consist of two statement fon (A) and Reason (R). Answer these questions selecting the appropriate optionh A and R are true and R is the correct explanation of A h A and R are true and R is not the correct explanation of A true but R is falseh A and R are falseAssertion:When a body is dropped or thrown horizontally from the same height, it would reach the ground at the same time.Reason:The horizontal velocity has no effect on the vertical motion.Assertion:If the net external force on a body is zero, then its acceleration is zero. The acceleration does not depend on force applied on the body.	ents - give			
Q12. Q. no Asserti- below: a) Bot b) Bot c) A is l) Bot 13.	displacement covered by him arrive (c) 0 m (d) 176 m (a) 936m (b) 56m (c) 0 m (d) 176 m A spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J (b) 32J (c) 8J (d) 24J 13 to 16 are Assertion - Reasoning based questions. These consist of two statements ion (A) and Reason (R). Answer these questions selecting the appropriate option th A and R are true and R is the correct explanation of A th A and R are true and R is not the correct explanation of A true but R is false Assertion: When a body is dropped or thrown horizontally from the same height, it would reach the ground at the same time. Reason: The horizontal velocity has no effect on the vertical motion. Assertion: If the net external force on a body is zero, then its acceleration is zero. Reason: The acceleration does not depend on force applied on the body.	ents - giver			
Q12. Q. no Asserti- below: a) Bot b) Bot c) A is l) Bot 13.	displacement covered by min three(c) 0 m(d) 176 m(a) 936m(b) 56m(c) 0 m(d) 176 mA spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J(b) 32J(c) 8J(a) 16J(b) 32J(c) 8J(d) 24J13 to 16 are Assertion - Reasoning based questions. These consist of two statement ion (A) and Reason (R). Answer these questions selecting the appropriate optionh A and R are true and R is the correct explanation of A h A and R are true and R is not the correct explanation of A true but R is falseh A and R are falseAssertion:When a body is dropped or thrown horizontally from the same height, it would reach the ground at the same time.Reason:The horizontal velocity has no effect on the vertical motion.Assertion:If the net external force on a body is zero, then its acceleration is zero.Reason:The acceleration does not depend on force applied on the body.Assertion:For a body moving along a straight horizontal line, work done by the gravitational force is zero.	ents give (1) (1)			
Q12. Q. no Asserti- pelow: a) Bot b) Bot c) A is l) Bot 13. [4.] 5. 4	displacement covered by him arrive (c) 0 m (d) 176 m (a) 936m (b) 56m (c) 0 m (d) 176 m A spring of force constant 800N/m has an extension of 5cm. The work done in extending it from 5cm to 15cm is: (a) 16J (b) 32J (c) 8J (d) 24J 13 to 16 are Assertion - Reasoning based questions. These consist of two statements ion (A) and Reason (R). Answer these questions selecting the appropriate option th A and R are true and R is the correct explanation of A th A and R are true and R is not the correct explanation of A true but R is false Assertion: When a body is dropped or thrown horizontally from the same height, it would reach the ground at the same time. Reason: The horizontal velocity has no effect on the vertical motion. Assertion: If the net external force on a body is zero, then its acceleration is zero. Reason: The acceleration does not depend on force applied on the body.	ents - given (1) (1)			

-	- the second stand of the second stand of the second stand s	(1)
Q16.	Assertion: When a body moves along a circular path, no work is done by the centripetal force	
	Reason: Centripetal force is used in moving the body along the circular path	
	and hence, no work is done.	
	SECTION – B	(2)
Q17.	A body is dropped from the top of a tower. If it describes 9/25th of the total height in the fifth second of its motion, then find the height of the tower.	
Q18.	The resultant of two forces 3P and 2P is R. If the first force is doubled then the resultant is also doubled. Find the angle between the two forces.	
Q19.	If 'v' is velocity and 't' is time, then find the dimensions of $(a \times d)$ in the following	(2)
~	equation: $v = a + bt + \frac{c}{d-t}$	1.10
Q20.	Two masses 6 kg and 10 kg are connected at the two ends of an inextensible ar massless string. The string passes over a smooth frictionless pulley.	nd (2)
	Calculate the acceleration of the two attached masses and the tension in the string.	
		-
	$ (\checkmark) $	~
	6 kg	
	10 kg	-
Q21.	Which one is easier - PUSH or PULL along a horizontal surface? Justify your answe	er. (2)
	State and according to low of conservation of linear momentum	
	State and prove the law of conservation of linear momentum.	
	SECTION - C	11 (2)
22.	If a stone is thrown at an angle θ with the horizontal with a speed u, then derive	the (3)
	expressions for the	
	(a) total time of flight,	
	(b) horizontal range and	
	(c) the maximum height attained.	
°	A bullet of mass 10g is fired horizontally into a 5 kg wooden block which is at resa horizontal surface. The coefficient of kinetic friction between the block and surface is 0.1. Calculate speed of the bullet striking the block, if the combine moves 20m before coming to rest. (Take $g = 10 \text{ m/s}^2$)	the

	OR Two particles A and B are traveling in the same direction on a smooth surface with speeds 4m/s and 3m/s respectively. They collide directly, and immediately after the collision continue to travel in the same direction with speeds 2m/s and v m/s respectively. Given the coefficient of restitution between A and B is $\frac{1}{3}$, find v.	
Q24.	respectively. Given the coefficient of restitution between A and 2 The displacement x as a function of time is given as $x = 3t^4 - 5t^3 + 10$, where x is in m and t in s, then find (a) The displacement at $t = 2s$ (b) The velocity at $t = 2s$ (c) The acceleration at $t = 2s$	
Q25.	Using any method, derive the equation $v^2 - u^2 = 2as$.	(3)
Q26.	Define centripetal acceleration. Derive the expression for centripetal acceleration of a particle moving with uniform speed 'v' along a circular path of radius 'r'.	(3)
Q27.	 (a) State and prove Work-Energy theorem. (b) If the momentum of a body increases by 10%, then by how much percentage will its kinetic energy increase? 	(3)
	 (a) A light body and a heavy body have the same kinetic energy. Which one will have a greater linear momentum and why? (b) A particle of mass 'm' is moving in a horizontal circle of radius 'r' under the action of a centripetal force equal to -k/r², where k is a constant. What is the total energy of the particle? 	(3)
	SECTION - D (CASE BASED QUESTIONS)	
ex me	he dimensions of a physical quantity may be defined as the powers to which the indamental quantities must be raised in order to obtain the unit of that quantity and pressed by putting square brackets. The dependence of a physical quantity on two or fundamental quantities can be averaged in the indication of a physical quantity on two or	(4)
(i) (ii) (iii) The	To check the correctness of a physical equation. To derive the relation between different physical quantities	

					having aquations	using the methods of	
	(iii)	The	checking nsions is l	the correctness of based on	physical equations	using the methods of	
		(a)		ality of frame of refe	erence		
		(a) (b)	-	of system of units			
		(c) (c)		hod of measurement			
		(d)			neity of dimensions		
	(iv)		-	dimensions cannot			
		(a)		imensional correctn	ess of a formula	1	
		(b)	convert		Compositionality in an	equation	
		(c)	find valu	ue of the constant of	f proportionality in an	ies	
		(d)	deduce a	a relation among va	rious physical quantit		
					DR		
	The	orinciple	of dimens	sional homogeneity	implies that:		
	1	(a)	Only the	variables with the	same dimensions may	y be multiplied	
		(b)	Only the	variables with the	same dimensions may	y be divided	
		(c)	Only th	e variables with	the same dimension	ns may be added or	
			subtracte	ed	10		
		(d)	Dimensi	ons of the quantitie	es on two sides of the	e equation may not be	
			the same		n an		(4)
Q30.	 To drive a nail into a wooden block, we blow a hammer on the nail. When a ball hits wall, it bounces back. In both of these examples, a large force acts for a very she duration producing a finite change in momentum of the body. Here it is difficult measure force and time separately. The product of the force and time that produces finite change of momentum is called impulse. Impulse = Force × time duration = Total change in momentum 						4
	(i)	A part to anot	icle is mo ther diame		th uniform speed v. I oint,	n moving from a point	
		(a)	the mom	entum changes by	2mv		
		(b)	the mom	entum changes by	$\frac{1}{mv^2}$		
		(c)	the kinet	ic energy changes	2		
				· · · · · · · · · · · · · · · · · · ·	at mil		
		(d)	the kinet	ic energy changes l			
	(ii)	(d)	the kinet	hall with velocity	v. The ball has mass se imparted by the ba	m and after striking it t?	
	(ii)	(d) A bat s retrace	the kinet strikes a b d its path.	hall with velocity		m and after striking it t? (d) 2mv	
	(ii) (iii)	 (d) A bat a retrace (a) 3m If two 4m/s, c 	the kinet strikes a b d its path. v	ball with velocity What is the impul (b) mv	v. The ball has mass se imparted by the ba (c) Zero moving in opposite		

SS3 Physics Page - 6 (Set-II)

Q32.	(a) A block of mass 6 kg is kept on a rough surface as shown in figure. Find	(5)
	acceleration and frictional force acting on the block. (Take $g=10m/s^2$)	(-)
	μ = √3/2	
	30°	
	(b) What is the banking of a road? Derive the expression of the maximum safe velocity of a vehicle on a banked road.	(
	OR	
	(a) A box of mass 4 kg is placed on a wooden plank of length 1.5m which is lying on the ground. The plank is lifted from one end along its length so that it becomes inclined. It is noted that when the height of the top end of the plank from the ground becomes 0.5m, the box begins to slide. Find the coefficient of friction between the box and the plank.	
	(b) Define: (i) the angle of repose (ii) the angle of friction.	
Q33.	(a) Define concurrent forces and their equilibrium.	(5)
	(b) As shown in the figure, a mass of 6kg is suspended by a rope of length 2m from the ceiling. A force of 50N in the horizontal direction is applied at the mid point P of the rope. What is the angle the rope makes with the vertical in equilibrium? Also calculate tensions T_1 and T_2 in the string. (Take $g = 10 \text{m/s}^2$ and neglect mass of the rope)	
5. • A	and neglect mass of the rope).	
	$\begin{array}{c} T_{1} \\ T_{1} \\ T_{1} \\ T_{1} \\ T_{2} \\ T_{2} \\ W \\ \hline \\ W \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	OR NO.	
	 (a) A person weighs 70 kg. He stands on a weighing machine in a lift which i moving: (i) upwards with a uniform speed of 10 m/s. (ii) downwards with a uniform acceleration of 5 m/s². 	15
	 (iii) upwards with a uniform acceleration of 5 m/s. (iv) What would be the reading if the lift falls down freely under gravity (iv) 0.9 m/s²) 	?
	 (g = 9.8 m/s) What would be the reading of the machine in each case? (b) Define the terms static friction, limiting friction and kinetic friction. Draw the graph between friction and applied force on any object labeling the types friction on the graph. 	he of

Page - 7 (Set-II)