

APEEJAY SCHOOL, SAKET

MID TERM EXAMINATION

SESSION: 2024-2025

SET A

SUBJECT: MATHEMATICS (041)

TIME: 3 HOURS

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based questions carrying 04 marks each.

Section-A

1.	The function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = x^3$ is	
	A. one-one but not onto	B. not one-one but onto
	C. neither one-one nor onto	D. one-one and onto

Let L denote the set of all straight lines in a plane. Let a relation R be defined by l R m if and only if l is perpendicular to m $\forall l$, m \in L. Then R is

A. reflexive

- B. symmetric
- C. transitive
- D. equivalence

CLASS: XII

M. Marks: 80

The number of equivalence relations in the set {1,2,3} containing the elements (1,2) and (2,1) is 3.

A. 0

- B. 1
- C. 2

- D. 3
- Which of the following corresponds to the principal value of branch of tan-1 x? 4.

A.
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

B.
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

B.
$$\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 C. $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right) - \{0\}$ D. $(0, \pi)$

The principal value branch of sec-1 x is

A.
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$
 B. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \{0\}$

$$B.\left(-\frac{\pi}{2},\frac{\pi}{2}\right)-\{0$$

$$D.\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$

The value of cot $\left[\cos^{-1}\left(\frac{7}{25}\right)\right]$

$$A.\frac{25}{24}$$

$$B.\frac{25}{7}$$

$$C.\frac{24}{25}$$

$$D, \frac{7}{24}$$

The value of $\sin^{-1}\left(\cos\left(\frac{43\pi}{5}\right)\right)$ is

A.
$$\frac{3\pi}{5}$$

A.
$$\frac{3\pi}{5}$$
 B. $\frac{-7\pi}{5}$

$$C, \frac{\pi}{10}$$

$$D_{*}-\frac{\pi}{10}$$

The domain of the function cos-1(2x-1)

C.(-1,1)

D. $\frac{\pi}{9}$

The matrix $P = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0 \end{bmatrix}$ is a

A. square matrix

B. diagonal matrix C. unit matrix

D. none

Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is

D. 512

If $\begin{bmatrix} 2x + y & 4x \\ 5x - 7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y - 13 \\ y & x + 6 \end{bmatrix}$, then the value of x + y is

A. x = 3, y = 1B. x = 2, y = 3C. x = 2, y = 4D. x = 3, y = 3If $A = \begin{bmatrix} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{bmatrix}$, then A^{-1} exists if 12.

C. λ≠-2

D. $\lambda \neq -8/5$

If A and B are invertible matrices, then which of the following is not correct?

A. adj $A = |A| \cdot A^{-1}$

B. $det(A)^{-1} = [det(A)]^{-1}$

C. $(AB)^{-1} = B^{-1}A^{-1}$

D. $(A + B)^{-1} = B^{-1} + A^{-1}$

If A is a square matrix of order 3, |A'| = -3, then |AA'| is 14.

C.3

D.-3

 $A.9 \int \frac{dx}{(\sin x \cos x)^2} =$ 15.

A. $\tan x + \cot x + C$

C. $\tan x - \cot x + C$

B. $(\tan x + \cot x)^2 + C$

D. $(\tan x - \cot x)^2 + C$

The function $f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$ is continuous at x = 0, then the value of k is 16.

C. 1

- The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at
- The number of points at which the function $f(x) = \frac{1}{x [x]}$ is not continuous is 18.

A. 1

B. 2

C. 0

D. infinite

ASSERTION-REASON BASED QUESTIONS

Each of the following contains Assertion and Reason and has the following four choices (A), (B), (C) and (D), only one of which is the correct answer.

- A. Assertion and Reason are true; Reason is a correct explanation for Assertion
- B. Assertion and Reason are true; Reason is not a correct explanation for Assertion
- C. Assertion is True, Reason is False.
- D. Assertion is False, Reason is True.
- Assertion: If A and B are symmetric matrices of same order then AB-BA is also a symmetric matrix.

 Reason: Any square matrix A is said to be skew-symmetric matrix if A = -A^T, where A^T is the transpose of matrix A.

20. Assertion:
$$\int e^{x} \frac{x}{(x+1)^{2}} dx = \frac{e^{x}}{x+1} + C$$

Reason: $\int e^{x} \{f(x) + f'(x)\} dx = e^{x} f(x) + C$

Section-B

21. Find the matrix X, if
$$X + Y = \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix}$$
 and $X - Y = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$.

22. Verify: A (adj A) = (adj A)A = |A|I for matrix A =
$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$
.

23. Find 'a' and 'b', if the function given by
$$f(x) = \begin{cases} ax^2 + b, & \text{if } x < 1 \\ 2x + 1, & \text{if } x \ge 1 \end{cases}$$
 is differentiable at $x = 1$.

24. If
$$x = a \cos^3 \theta$$
, $y = a \sin^3 \theta$ then, find $\frac{d^2y}{dx^2}$.

Volume of the cube is increasing at a rate of 9 cubic inches per second. What is the rate at which surface area is increasing when the length of the edge of the cube is 10 inches?

Section-C

26. Find the value of
$$\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$$
.

27. Find:
$$\int \frac{1}{x^2 - 8x + 15} dx$$
.

28. Find
$$\int \left[\sqrt{\cot x} + \sqrt{\tan x} \right] dx$$

29. Prove that

$$\cot^{-1}\left(\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right) = \frac{\pi}{2} - \frac{x}{2} , \ 0 < x < 11/2.$$

- Let $A = R \{2\}$ and $B = R \{1\}$. If $f: A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$, show that f is one one and onto. Hence, find f-1.
- (a) For what values of k and m, the system of linear equations 31. 2x + ky + 6z = 8, x + 2y + mz = 5, x + y + 3z = 4 has a unique solution?
 - (b) For what values of k, the system of linear equations 2x + ky + 6z = 8, x + 2y + z = 5, x + y + 3z = 4has infinitely many solutions?
 - (c) For what values of k, the system of linear equations 2x + ky + 6z = 8, x + 2y + z = 6, x + y + 3z = 4has no solution?

32. If $A = \begin{pmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{pmatrix}$, find A^{-1} , Using A^{-1} solve the following system of equations:

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 2, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 5, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 4; x, y, z \neq 0.$$

Use product $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$ to solve system of equations

- Find $\frac{dy}{dx}$, if $y^x + x^y + x^z = d$.
- Show that the relation R defined by $(a, b) R(c, d) \Rightarrow a + d = b + c$ on $A \times A$, where set $A = \{1, 2, 3, ..., a\}$ 34. 10) is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c, d ∈ A.
- A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is tan (0.5) Water is poured into it at a constant rate of 5 cubic meter per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 4 m.

4

Evaluate: $\int \frac{\sin^{-1} x - \cos^{-1} x}{\sin^{-1} x + \cos^{-1} x} dx.$

Section E

A toy manufacturer wants to cut a 28 metres long wire into two pieces. One of the two pieces to be bent into the form of a square of side x and other into the form of a circle of radius y. Based on the above information answer the following questions.

- (i) What is the relation between x and y?
- (ii) If A is the total area of the circle and square, then A is
- (iii) What is the minimum value of A?

What is maximum value of A?

Three schools X, Y and Z decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats and plates from recycled material at a cost of Rs. 25, Rs. 100 and Rs. 50 respectively. The number of articles sold are given as

	V	V	Z
School / Article	Λ	1	35
Handmade fans	40	25	33
Handinade resis		10	50
Mats	50	40	10
Distan	20	30	40
Plates			

Based on the information given above, answer the following questions:

- (i) What is the total money (in rupees) collected by school X?
- (ii) What is the total amount of money collected by all three schools X, Y and Z?
- (iii) If the number of handmade fans and plates are interchanged for all the schools, then the total money collected by all schools is_

OR

Total number of articles sold by three school is

38. Read the following passage and answer the following questions.

In order to set up a train water harvesting system, a tank to collect rain water is to be dug. The tank should have a square base and a capacity of 250 m³. The cost of land is Rs. 5,000 per square metre and cost of digging increases with depth and for the whole tank, it is Rs. 40,000 h², where h is the depth of the tank in metres. x is the side of the square base of the tank in metres.

- (i) Find the total cost C of digging the tank in terms of x.
- (ii) Find $\frac{dC}{dx}$.
- (iii) (a) Find the value of x for which cost C is minimum

 OR
 - (b) Check whether the cost function C(x) expressed in term of x is increasing or not, where x > 0.