- 5. If $\int \frac{dx}{(x+2)(x^2+1)} = a \log|1+x^2| + b \tan^{-1} x + \frac{1}{5} \log|x+2| + C$, then

 - a. $a = \frac{-1}{10}, b = \frac{-2}{5}$ b. $a = \frac{1}{10}, b = \frac{-2}{5}$ c. $a = \frac{-1}{10}, b = \frac{2}{5}$ d. $a = \frac{1}{10}, b = \frac{2}{5}$
- 6. The area of the region bounded by the curve y = x, x = 0 and x = 4 is
 - a. 16 sq. units
 - b. 8 sq. unit
 - c. 4 sq. units
 - d. 2 sq. units
- 7. Let the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : |a a| \}$ b| is a multiple of 4}. Then the equivalence class containing 1, is:
 - a. {1,5,9}
 - b. $\{0,1,2,5\}$
 - с. ф
- 8. The principal value of $\cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ is

 - b. $\frac{4\pi}{3}$ c. $\frac{\pi}{2}$
 - d. None of these
- 9. If the function $f(x) = \begin{cases} e^x + ax, & \text{if } x < 0 \\ b(x-1)^2, & \text{if } x \ge 0 \end{cases}$ is differentiable at x = 0, then (a, b) = 0
 - a. (-3, -1)
 - b. (-3,1)
 - c. (3,1)
 - d. (3,-1)
- 10. The sides of an equilateral triangle are increasing at the rate 2 cm/sec. The rate at which the area increases, when side is 10cm is:
 - a. 10 cm2/s
 - b. $\sqrt{3}cm^2/s$
 - c. $10\sqrt{3}cm^2/s$
 - d. $\frac{10}{3}$ cm²/s
- 11. If f(a+b-x) = f(x), then $\int_a^b x f(x) dx$ is equal to
 - a. $\frac{a+b}{2}\int_a^b f(b-x)dx$
 - b. $\frac{a+b}{2} \int_a^b f(b+x) dx$ c. $\frac{b-a}{2} \int_a^b f(x) dx$ d. $\frac{a+b}{2} \int_a^b f(x) dx$
- 12. The value of $\int_0^{\frac{\pi}{2}} \log \left[\frac{3+5\cos x}{3+5\sin x} \right] dx$

 - b.

 - d. None of these

13. If
$$x = a\cos^3\theta$$
, $y = a\sin^3\theta$, then $\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ is equal to

- a. $tan^2\theta$
- b. sec20
- c. sec θ
- d. $|\sec \theta|$

14. Evaluate $\int \frac{(\log x)^2}{x} dx$

15.
$$f(x) = x^x$$
 has a stationary point at

- a. x = e
- b. $x = \frac{1}{x}$
- c. x = 1
- d. $x = \sqrt{e}$

16. Area of the ellipse
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 is

- a. 20π sq units
- b. $20\pi^2$ sq units
- c. $16\pi^2$ sq units
- d. $25\pi^2$ sq units

17. The area bounded by the curve $y = \sin x$, x - axis, ordinates x = 0 and $x = 2\pi$ is

- a. I sq. units
- b. 2 sq. units
- c. 3 sq. units
- d. 4 sq. units

18. A cylindrical tank of radius 10m is filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of

- a. 1 m/h
- b. 0.1 m/h
- c. 1.1 m/h
- d. 0.5 m/h

For questions 19 and 20, read the statements carefully and mark the correct option

- a: Assertion (A) is true, Reason (R) is true; Reason (R) is a correct explanation for Assertion (A)
- b. Assertion (A) is true, Reason (R) is true; Reason (R) is a not correct explanation for Assertion (A)
- c. Assertion (A) is true, Reason (R) is false
- d. Assertion (A) is false, Reason (R) is true

19. Assertion (A): The value of
$$tan^{-1}\{cot(cosec^{-1}2)\}=\frac{\pi}{3}$$

Reasoning (R): if
$$y = \sin^{-1} x$$
, then $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

/20. Consider the function
$$f(x) = \begin{cases} x^2, x \ge 1 \\ x + 2, x < 1 \end{cases}$$

Assertion (A):
$$f$$
 is not derivable at $x = 1$ as $\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$

Reasoning (R): if a function f is derivable at a point 'a', then its continuous at 'a'

Section B (2 marks each)

$$21. \int \frac{2x}{\sqrt{a+x} + \sqrt{a-x}} dx$$

22. Show that the function $f: R \to R$, defined by f(x) = |x| + x is not an onto function

23. Prove that
$$3\sin^{-1}x = \sin^{-1}(3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$

24. Differentiate x sin x w.r.t x

25. Integrate
$$\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} dx$$

Section C (3 marks each)

26. Differentiate w.r.t x:
$$(\sin x - \cos x)^{(\sin x - \cos x)}$$
, $\frac{\pi}{4} < x < \frac{3\pi}{4}$

27. Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by $R = \{(a, b) : a, b \in A, |a - b| \text{ is divisible by 3}\}$ is an equivalence relation

28. Prove that:
$$\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}$$
; $0 < x < \frac{\pi}{2}$

29. Determine for what values of x, the function $f(x) = x^3 + \frac{1}{x^3}(x \neq 0)$ is strictly increasing or decreasing.

30. Manufacturer can sell x items at a price of Rs $\left(5 - \frac{x}{100}\right)$ each. The cost price of x items is Rs $\left(\frac{x}{5} + 500\right)$. Find the number of items he should sell to earn maximum profit.

31. Evaluate
$$\int_2^4 \{|x-2| + |x-3| + |x-4|\} dx$$

Section D (5 marks each)

32. If
$$x = \sin t$$
, $y = \sin pt$, then prove that $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + p^2y = 0$

33. Show that the height of the right circular cylinder of greatest volume which can be inscribed in a right circular cone of height h and radius r is one-third of the height of the cone, and the greatest volume of the cylinder is ⁴/₉ times the volume of the cone.

. 34. Using properties of definite integrals, evaluate $\int_0^{\pi} \frac{xdx}{a^2\cos^2 x + b^2\sin^2 x}$

35. Find the area of the region bounded by the circle $x^2 + y^2 = 16$

3

Section E (4 marks each)

- 36. Evaluate
 - a. $\int_{-1}^{3} [x] dx$
 - b. $\int_{-2}^{4} f(x)dx$, where $f(x) = \begin{cases} 2x^2, & \text{if } x < 0 \\ 3x, & \text{if } x \ge 0 \end{cases}$
- 37. A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is $\tan^{-1}(0.5)$, water is poured into it at a constant rate of 5 cubic metre per hour. Find the rate at which the level of the water is rising at the instant when the depth of the water tank is 4m.
- 38. A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote.

Let I be the set of all citizens of India who were eligible to exercise their voting right in general election. A relation R is defined on I as follows

 $R = \{(V_1, V_2): V_1, V_2 \in I \text{ and both use their voting right in the general election 2024}\}$ Answer the following questions

- i. Check whether this Relation is equivalent?
- j. Mr. Shyam exercised his voting right in General Election 2024, then Mr. Shyam is related to which of the following. Choose one
 - a. All those eligible voters who cast their vote
 - b. Family members of Mr. Shaym
 - c. All citizens of India
 - d. Eligible voters of India

St. Paul's School Class – XII Half Yearly Examination (2024-25) Mathematics (Code 041)

Time - 3 Hrs.

Max. Marks - 80

General instructions:

(i) This question paper contains five sections A, B, C, D and E. Each section is compulsory.

(ii) Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

(iii) Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.

(iv) Section C has 6 Short Answer (SA) type questions of 3 marks each.

(v) Section D has 4 Long Answer (LA) type questions of 5 marks each.

(vi) Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Section A (1 mark each)

- 1. Let $f: R \to R$ be defined by $f(x) = x^2 + 1$. Then the pre-images of 17 and -3, respectively are
 - a. ϕ , $\{4, -4\}$
 - b. $\{3, -3\}, \phi$
 - c. $\{4, -4\}, \phi$
 - d. $\{4, -4\}, \{2, -2\}$
- 2. If $\sin^{-1} x > \cos^{-1} x$, then x should lie in the interval
 - a. $\left(-1, -\frac{1}{\sqrt{2}}\right)$
 - b. $\left(0, \frac{1}{\sqrt{2}}\right)$
 - c. $\left(\frac{1}{\sqrt{2}}, 1\right)$
 - d. $\left(-\frac{1}{\sqrt{2}}, 0\right)$
- 3. If $y = \log\left(\frac{1-x^2}{1+x^2}\right)$, then $\frac{dy}{dx} =$
 - a. $\frac{4x^3}{1-x^4}$
 - b. $-\frac{4x}{1-x^4}$
 - c. $\frac{1}{4-x^4}$
 - d. $-\frac{4x^3}{1-x^4}$
- 4. The function $f(x) = 2x^3 3x^2 12x + 4$ has
 - a. Two points of local maxima
 - b. Two points of local minima
 - c. One maxima and one minima
 - d. No maxima or minima